| o M.ASD.
_ : , LIBRARY,
Book Mo, 306) . -

‘t -

Ameﬁor ent No, @l

o : . i This Boek forms pari of the IL_SD
' Software Library.

- If there is a GREZYN MASD LIBRARY stanp
on this page, then this is & Recorded
Copy of the Kaster Book, for which
an UPDATIEG service is available;

s0 it could be up-to-date.

If there is LO stzmp or only a
XEROYED \UCALLED v thids e
coepy has KO uddc..ulnr_.. garv
reader uses it 2t his PERIL.

— Eherconi-Elliott Avionic Systems Limitad Compil o Vot)
mpiled from Various Scurces
: Afrport Works, Rochester, Kent, MET 2XY =T " ?
, Issued by %.J.Frogzatt.

A GEGMarcon: Elzctronics Company

— : . 4 s -
Telephone: Meduay (0624 44400 e F"‘“’Eﬂ‘ \ k‘f{”ﬁ‘
Telegrams: Eltotauto Roghester : __} %\ \

Telex: 8633374 T - -

©7he Copyright In this dacs.mem {6 the property of Bltiett Brothers {Loandoy) LI Tt ed The dacr.m:c’li is eupplied by Elllots Bircthers (Loaden Limited on the
FLY PRITEEL CACePT w8 RuVirined in

exprits dorsne thal ii isto: be ix‘eai(f e wond ..c-rssa; wd '!xat it mny net &,m copi:d \«~££f e :ﬂs:io'n dde othere for

t.ri'.m;; by ﬂzia Cc.mpzmy. I

— PREFACE,
Fhof b

This book describes the following tapes:-

9C5 FORTRAN COFPIIER, 1/1/74, Binzry Mode 3;
- 905 FORTRAN L.IBRARY VOI 1, 1/1/74, Intermediate Fode 3;
905 FCRTHaY LIBRARY VOL 2, 1/1/74, Intermediate Mode 3.

These tapes enable FORTRAN programs to be run on a
905 cr 920C compuier with at least 16K store.

— 505

FORTRAEY COMPILER,

fal
S
Yy

1/1/74,

G5

PORTRAN

Pinery Fede

LIBRARY YOI 1, 1/1/74. Intermediate Fode 3

B3]

05

FORTRAN LIBRIRY VOL 2, 1/1/74, Intermediate Mode 3.

CEAPTER

CHAPTH

2

[\S]

;NNO"E\)NNNNNNNNNLHNNNN»@-&»N*—

N

Preface

THE CHARACTER SET

ELEI‘JE‘W‘ OF THE 9057?0?\2‘?3 AN LANGUAGE

[SA RN RS, RS RS BRI |
= DGO =3 O WD

2. Constants -~ Definition
2. Integer Constants
2. Real Constants .
2. Cther Types of Censtants
4.1 Double Precision Constants
4.2 (Complex Consiants
.4.3 Logical Constants
4.4 FHollerith Constanis
Variables
5. Definition
.5. Uses of Variables
5 Identifiers

Integer or ¥ixed Point Variables
Real Variables

Double Precision Variables .
Complex Variables

Logical Variables

Arrays

0 Storags of Arrays
2. Expressions
General

ZCJ\O\

G\’J\O\O\.
e L W

1
.2

e

v

Order of T?vall.iation

Treatrﬁen’c of Integev and D\eal Values

Results of Integer Division
Exponentiation Results
Types of Allowable Expressions

-
o

H
=

s C2

[a—
H

s

e
TN OO N AR A

(s

R o R R A = =
[I el

BN
IR S A

[AT 4 T 1 I PR T

h

i

A B o6 B oW

2

o O~

27
27

CHAPTER -3

CHAPTER 4¢ @

CHAPTER 5

-

W oW W

STATEMENTS:

5.

Page

29-38

.1 Format 29

2 Arithmetic Assignment Statements 29

2 Mixed Mode Arithmetic 30

4 Control Statements 31

3.4.1 Statement Number or Labels 31

3.4.2 GOTO Statements 32

3.4.3 Unconditional GOTO Statement 32

3.4.4 Computed GOTO Staternent o33

3.4.5 Assignment Statement and Assignment

- GOTO 33

" 3.4.6 The Arithmetic IF Statement 34
3.4.7 The Logical IV Staterment and Logical

. : Statements 34

3.4.8 CONTINUE Statement 36

3.4.9 DO Statement 35

3.4.10 PAUSE Statement 37

3.4.1]1 STOP Statement 38

3.4.12 END Statement 38

2.4.13 RETURN Statement 38
SPECIFICATION AND DATA STATEMENTS 39-48
4.1 DIMENSION Statements -39
4.2 COMMON Statements £0

4,2.1 COMMON State*rent with \l‘amed

COMMON 41
4.3 EQUIVALENCE Statements 42
4.4 Restiriction on Seguence of Items in
Eqguivalence Group 43
4.5 Resiriction on Names in Specification '

' , Staterments 43
4.6 Examples of Statements 44
4.7 Use of Store Map 45
4.8 Typec and EXTERNAL Statement 45

4.8.1 Type Statement T 45

4.8.2 EXNTERNAL Statement 46
4.9 DATA Statement 47
4,10 Restrictions on the Seguence of Items within

a Subprogram 48
INPUT AND OUTPUT 49-06

1 Input and Output Statements 49
5.2 The List of an Input or Output Statement 50
5.3 Lffect of Numeric Item in READ and WRITE

- Lists 52

(i1)

CHAPTER 6

CHAPTER 7

.4 FORMAT Statement 52
5.4.1 General Form of FORMAT Statements 52
5.4.2 Repeat Counts 54
5.4.3 External Records and Newlines 54

.5.4.4 Field Descriptors Available 55
5.4.5 Scale Factors 56
5.4.6 Input of Numbers under Format Control 56
5.4.7 Field Specification I {Integer) 57
5.4.8 Field Specification F (external to fixed-

point} 57
5.4.9 Field Specification E {floating point) 58
5.4.10 Field Specification G {Freepoint) = 58
5.4.11 TField Specification D {double precision) 59
5.4.12 Field Specification L (logical) 59
5.4.13 Conversion for Complex Numbers 59
5.4.14 Field Specification A (alphanumeric) 60
5.4.15 Field Specification X {skip) 61
5.4.16 Field Specification H {Hollerith) 61
5.5 Esxamples of Field Specifications &2
5.6 Number out of range on Output 63
5.7 Routine FORMAT Statement Input 64
5.8 Free Format Input. : 64
5.8.1 Data Tapes for Free-Format Input 6%
5.8.2 Examples 65
FUh CTIONS AND SUBROUTINES 67-74
6.1 Subprograms - General 67
6.2 Main Programs, Subprograms and Program
Units 67
6.3 Types of Procedure _ 68
6.4 Subprogram Head - 68
6.5 The Subprogram Body . 69
6.6 IExamples of Function and Subroutine '
' Subprograms 70
6.7 Calling a Subprogram _ 70
6.8 IExamples of Calling Subprograms 71
6.9 Statement Functiions) 71 -
USE OF MASIR/SIR CODING WITHIN FORTRAN 75-82
TEXT
7.1 Code Section ’ 75
7.1.2 Format ' o 75
7.1.3 Form of Machine Code Instructions
within a FORTRAN Unﬂ, 75
7.1.4 Labelling Instructions .15
7.1.5 Operand 76
7.1.6 Example 76
7.1.7 Return to FORTRAN Text ' 78
7.1.8 Constant on Symbolic Names . T2
.2 Program Units in Machine " Code - 78

Page

7‘(iii)

CHAPTER

|8 .

CHAPTER 9

CIJ&}"’T BR

CHAPTER

APPENDIY

APPENDIX

10+

i1 :
-
2
3

Page

WRITING FORTRAN PROCRARMS 8358
8.1 Program Writing : 83
.72 Fiwed Format 83
8.3 Free Format ’ ' 84
£.4 Punching Instructiong B5
8.5 NWames Starting with ‘ B6
§.6 Example of Written Program in Freew
7 Format 86
8.7 Correction of FORTRAN Programs 87
COMPILER OPERATION - 89-92
9.1 . Options : N : 89
5.2 Secondary Qulput & 89
9.3 Error Reports 89
9.4 Data Map ' . - 9};0
ERROR MESSAGES - | 93-106
1.3 Compile~time Errors - . Q3
10,2 Loader Brror hicssages 101
10.3 Run Time Erroxrs S R VA
10.3.1 Error Reporis frem Mathematical :
Functions 102
10.3.2 Input/Output Error Reports 183
10.3.3 Control Error Reports 105
OPERATING INSTRUCTIONS B 1¢7-112
11.1. Compilation 107
il1.2 900 Loader QOperating Instructions for
' FORTRAN use 108
11.3 Loader Option 2its 109
1.4 Store Layout 110
©11.4.1 ZLoading 110
11.4.2 Difierent Store Sizes 110
11.4.3 Library _ . 110
11.5 Store Map at Run-time 111
BASIC SUFPPLIED FURCTIONS 1-1-1-6

DIFFEAENCES BETWEEN ASA AND 905 FORTRAN 2- 1 -

EFFICIENCY CONSIDERATIONS 31

(iv)

2-2

PREFACE

The.information contained within this publication describes the FORTRAN
language applicable to 905 series 18-bit machines and termed '905 FORTRAN;
the origin of the word FORTRAN is derived from the words FORmulae
TRANslations. 905 FORTRAN contains rnost of the features of full standard

ASA TORTRAN, see Appendix 2,

905 FORTRAN can be used on any 905 Series 18.bit machine which includes
teleprinter, punch and reader facilities and has a minimum store size of 16K,

FORTRAN prograrns must only be written and/or punched in characters which
are contained in the 900 series internal character code, see Chapter 1,

As with all other languages {e.g. English, Mathematics and the programming
languages COBOL, USERCODE etc.) rules are applicable to the use of 905
FORTRAN. These rules are termed the *syntax® of the language. The
meanings given to elements of the language are termed the *semanticst of

the language. Elements of the language take the form of characters usad
singly or in various combinations to form statements, the uses of which

are governed by the syntax of the language.’

Although a prdgramn‘:er may prepare a program which is syntactically
perfect, the semantics of that program may not necessarily fulfil the purpose
of that program. It is therefore essential that programmers understand fully
the implication of both the syntax and the semantics of the language and of a
program written in that language. _ -

Page 1 & 2

¥ -

C_HAPTER 1: THE CHARACTER SET

As all elements consist of characters used either singly or in combination,
characters are the first items to be detailed.

FORTRAN character set consists of the following characters?

The standard
A, B, C, D, E F, G H LI XK L M, N, ¢ P, O,R, 5 T, U, v, W,
¥, Y, 2,0,1,2, 3, 4,5, 6, 7. 8, 9, and:

Character Name of Characieor

Blank {space in paper tape code)

= ‘ Eguals

+ Plus ’ ’
- Min{;_s

o Asterisk

/ Slash

{ Left Parenthesis

) Right Parenthesis

» Comma

- ' - Decimal Point

v ’ Currency Symbol

Standard FORTRAN programsmustbe written using the above characters.
Other.characters, which are not part of the standard character set, ray

warned that use of other characters may restrict compatability with other
FORTRAN implementations. ' ‘

given in the table at the end of this chapter. It is based cn the B
Standard variant of the International Standards Organisation (ISO
The following characters have special significance:

Space . This is the character referred to as "blank! in the FORT
. standard, in accordance with punched card convention
Except wheve explicitly stated, space is not a
characte and may be used freely to improve the appearance
of programs.

Newline {Line feed on some teleprinters)
" Newline normally indicates the beginning ¢f a new recor
line. Within a program, lincs may be up 1o 72 chs

ignoring null (paper tape blank), carriage roturn and erase,
Newline may not be included in a Hollerith string or constan

NOTI:: The codes for CARRIAGE RETURN, ERASE and RUNOUT,
' though they may appear in a FORTRAN data or program tape,
are ignored when recad by the compiler.

The character for HALTCODE is used to halt the machine at the end of a
tape. If a program comprises miore than one tape, each tape must be
terminated with a HALTCODIZ. This termination of tape makes possible
the reading in of consecutive tapes. Each HALTCODE must follow a new
line,

rwreadoad g
pexoult fuanjex oferiae) 10110001 "1y 1TD 51 €1
ﬂ 00110000 21 2T
sxedoeIEyd Tedarl : K
e ﬁﬁM 11010001 651 11
f
[BPUTTMIU SIBNED "PIa] Qﬁ]ﬂ 1 10 QIO TY0000 pPRog aull Gt 01
*9ouds oy
jueTeAINDe {Iojuradsie; Aqe .

perouldy qm; HmuﬂoNﬁoHi, 100710000 ge L I0H 6 6
00010001 9¢1 g

TTI1I°00007% 1isg ¢ L

‘sxelonrEyd TRBOIL 0T1°00000 9 9
T01°00000 G g

‘ 001 00001 281 ¥

110°00000 € ¢

CI0'0000T 0¢tl 2

i 100 “0000T 621 1

rurexdoxd Aq poxoud:

toder xaoded uo yue(g Q00 °00000 TIoN 0 0

M IRUTIDD L] 123120 uILIIT I23DBIBYD) - Ajrxeg ouTBA

SHLON 2pOTy JRUIDIUL VIS Axeurg 2povaIa], YITM ONTEA P00 OS5I

198G X930BATYD NVHELYOL 506

Page 6

T171°71001 64T 1€
CIT"1I00C 0e 0g’
0 101711000 67 67 .
00111001 941 8¢
I1T07°11000 L7 L2
szo10vzyo (edoryIY ! 01011001 vS1 97
Hoo.ﬂﬁeoM 1R G
000 "TT000 2 -
111700100 €< .wm
Q11°01001 0s1 22
- 101701001 6%1 12
‘adey kommnwmo.k
- andut sirel Caajuradeei |
Aq porouwdy 11reH 00101000 el oz 0z
>
T10°01007T IA ! 61
\ oHo.QﬁOOO 81 81
szojdrvIRyYD) (BB ¢ 160 °01000 L1 L1
000701001 Y1 St
111710000 ST Sl
01T 10001 Z¥1 ¥l
.] TRUIIDT (T 12120 wIoyed 1030BIRYD Ayrzeg’ onTeA
SHLON PO 1BUIBIUL YIS Lyeurgy apooale I, YIts aNTCA opos OST

81 22 010701101 Z 8LIT 0g
sdia LT 12 100°01101 I LLT 6
| 91 02 000°0T100 0 g% . ¥
(ysels) sopriog G1 L1 TTT°1070T / GLT LY
doig 1103 v1 91 0T11°10100 ¥ 9% 9F
(woydAy) snutiy €1 51 101710100 - G i
BUIUIO D Z1 ?1 00T 10101 ‘ LT o
snld 11 €1 110710100 + ¢ £
M§1I9I8 Y 01 21 010" 10101 0Ll A%
stsoyludred 14ty 6 1 100107101 { 691 17
stsayjuerd jyory 8 01 000 "00100) OF 0¥
(o300b uadQ) oinoy L Lo 11°00100 - 6¢ 5¢
pues zedury 9 90 011700101 3 991 8¢
jusdred G G0 1071 .oo.:z O €91 LE
“[oquifs .\,waﬁﬁa - IBI[OC ¥ ¥G 001700100 & 9¢ 9€
.ﬁ.ﬂﬁ&ﬂﬁ 2WIOS. uo ¥ ¢ €0 11000101 =3 £91 6%
s9300y Z 20 010700100 " ¥ 23
“IlorTaITud
[eHO7IT ~ NIBUWI UOTJRITTOX 106700100 ; 19 €¢
ooedg 0 00 000°0010T oordg 091 43
¢ TeWIISO] TBIDO uraned IBOTITYY Apang INTTA
SELON CBP0D jEuasiul WIS Axeurg DPOTBTI L UITM SUTBA SpoD QI

7

]
Page

...... 9 47 001700010 a 89 89
5¢ ¥ 110700011 5 561 L9’
sLone b (A4 01000010 € 99 99
€¢ 167 100000710 4 9 3
‘gapjurad .
=970} DUIOS WO \ IARIL) 7€ 0% 000700011 D, 261 9
"grajuridore)
swos uo (0T} 1diaosqng 1€ L€ P11 11100 é €5 €9
weys 1038010 o€ 9% 0TI IT10T < 061 29
o) yenba 6z - { € TOT 11101 = 681 19
weyy $50°] ¥ i 00T °LIT100 > 09 09
~uotodUIeg L2 €€ 110711101 ! L81 65
UoToD 92 2 0T0 11100 ; 85 cpe
<z € 100°17100 6 15 LS
| %2 0 000 11101 g P81 96
s3drg €2 L2 (100101 L €81 e
| 22 92 0T1 01100 9 ¥S 2
12 52 10T 01100 S €S €5
07 ¥Z 00T 01101 ¥ 081 5
61 €2 110701100 ¢ .18 16
reurrda(ll 12100 uxsiredg I93dereyn Aprxedg ane A
SA.LON °po TRUXDIUY VIS Axeurg Sy olelel o 4 YsTM anieA

2poD OsI

e8“

)

"
eg

. .

aG

L9 111701611 . Mo $12 B
%S 99 01101010 A Jffffw,omf;!f 98
€S $9 101°01010 n 58 63
2¢ %9 00T°0T0TT L 212 59
15 €9 110°01010 S €9 €8
0% 29 0T0°'0T0TT b 012)
6y | 19 100701011 o 602 13
‘ 8% 09 00001010 g 08 08
LY LS 11110011 o) L0? 6L
| 9% 96 011°10010, N 3L 8L
% ss 101°100710 W LL- LL
5 I8 < By bS 00T T00TT . T 02 92
£ ¢g 11010010 .. b GL sL
2z 75 . 01010011 r 202 i)
% 15 10010011 I 102 €L
0¥ | 05 .| 000°t0010 H zL zL
6€ L% 111700010 D 12 1L
g€ 9% 0TT'0001T i 861 0L
L 5% 10100011 G L61 69
TRWIYA (T | TRID0 uis 3ed I530BIBYD Ajtxeg OTIEBA
SHALON ohor {edreiu] HiE Laeurg apoosIa L YITM TR A

opoD OSI

Page 9

¥ 1¢ 100710110 t SOT. 501
__ 0% 0s 000 "TOTIIT q €2 $01.
6¢ LY TIT°00T1T 8 162 €01
8¢ 9¥ CTT 00110 3 2071 201
, LE | <y 10T 00110 ° 101 101
"xsjuradare) wo eseo roddp 9¢ i34 00T °00T1T P 822 001
cg % 110700110 o 66 66
i< zv 01000111 q 922 86
€€ 1§ 100700111 e 622 L6
“(saourrdsiag .
UGS UO @) IW0DDT pARIL - 000 "00110 - N 96 96
. (sxsjuraders;
QUIOS WO) *IVYD DUTTILpU[) €9 L. 111°11010 G6 56
‘zoqurxd ourf uo |, 29 9L OTT'T10TT 1 222 ¥6
reddeaq jydry 19 gL 10117011 [122 $h
{sxzjuradore)
1 0UI08 WO }) YSTIS 9SI0ADY 09 ¥l 00111010 / 26 6
1o3d¢Iq 130T 65 €L 110°T1071 7 612 16
85 ZL 010 11010 Z 06 06
$ 103307 LS T2 110°11010 X 68 68
9§ 0L 000 TT01T X 912 83
E.HOZ. TReuwILoac | 12120 uxsijyed I93deIRYD Ajtreg snuieA
SH dpoD TRUIOIUT YIS Lzeurg opodala HITs anTeA epoD O&I

- Page 10

‘weifoxd

H

Aq poacuBy - esery TIT 1011 662 L21

. S 1 OTT TTIT0 971 971
"sI93veIRYD RS 1071711110 521 AN

00T TITIT 252 P21

; 110711110 €21 £

- 85 ZL 0TO"TITTI z 062 221

Ls 1§ 10011111 A 6%2 121

96 0L 000°T1TIO * 021 021

1= L9 TI1°01T10 " 611 611

g 99 OTT 0TI A 992 81T

| € 59 10T 0TITI 0 Spe LT1

25 $9 L0 01110 1 91T G511

15 €9 T10° 0111 s £¥Z ST1%

ojutzdero I 05 | 29 010 0TITT0 I P11 FIT,

o 9o 10ddn 6v 19 100 51110 b €11 €11

8y 09 000w ITTI d 0ve (AR

LY LS I11°107T10 = 148! 111

9% 9¢ 0L 10111 u 87 01T

¥ $S 10T T0TTI w L€2 601

¥ ¥S 00T°10T10 1 861 801

<F €4 110 °T0TTT e 5% LOT

ks 28 010°10170 [901 901
: S LON / TRUITDD (] 18190 uieeg mmwu.m.w,ms“u Ajrxeg onye

. PO TRWILIU] WIS Axvurg apooara TITM ONTRA P00 O]

& 12

ge 11

3T
[Eta)
PR o5 a

CHAPTER 2 : ELEMENTS OF THE 905 FORTRAN LANGUAGE

This chapter defines the elements {rom which 905 FORTRAN statements
are composed. They are: :

a) Constants
b} Variables
¢} Identifiers
~d) Operators
e) Expressions -
f} Functions

2.1 Constants«Definition

A constant is a value which remains uncharged throughout its use; it can
be used in one or more statements. For example, in the statements:
x=a+t+3

Y:b+4

x,a,y and b can vary {i.e. are variables)

+3 and +4 remain unchanged {i.e. are constants).

Constants can be of various types, i.e.

Integer constant

Real :constant

Doubie precision constant
Complex constant
Logical constant

}ibilerith constant

For many straightforward programs it is sufficient to use integer and

real constants only; programmers unfamiliar with FORTRAN should avoid
the use of other typesuntilmore experience isobtained intheuse of FORTRAN,

" If the value of an integer, real or double precision constant is positive,

the inclusicn of a plus sign preceding the constant is opticnal; if the value
represented is negative, a minus sign must precede the constant. An
unsigned vaive is assumed to be positive, : '

'« S . Page 13

2.2 Integer Constants

 These constants consist of whole numbers (intcgers) and sre written os a

cet of digits either optionally preceded by a plus sign, or preceded by a
minus sign. :

An integer constant can take any integer value in the rary i
- 131071< constant& 131071

Examples of valid integer constants are:
0

+9387 :

=2001

6

Examples of invalid integer constants are:

12.78 - contains a fractional part and is therefore a real constant
~10,000 = contains invalid character i.e. comma
16748932 ocutside the value range for an integer constant

2o 3 Real Constants

" A real constant can take any (real} value in the range:

~1019.L constant <-‘1019 (including zero)

1

Real is used in this instance in its mathematiczal sense of any numerical
value not containing an imaginary part. ‘

A real constant may be written in one of the forms which follows:

a) A set of digits containing a decimal point . g,
2.5 . 05 123.
b) A set of digits which can contain an optional decimal point,

followed by a capital letter E and an opti ionzally signed. integer .
of one or two digits length., E.g.

Z.5E1 36E~15 L03E+12

NOTE: In either form the signing of a real constant is cptional.

The integer aiter the character E represents a power of 10 multwlylng
the number that precedes the E. In the examples ziven the values
represented are!

z.5%100 36%10°1° 12 : '

03“'10

S o ’ ‘ : . Page 14

Examples of valid real constants ares
0.0 |

-2000. 0

+2.34 ,

5. 0E+6 (5%10%)

-7.E~12 {m"?‘(}:}:lg“lz}

Examples of invalid real conetants are:

12,345.6 - commia is an invalid character

+234 - no decimal point and is therefore an integer constant
5.86E2.5 - exponent not an integer

1,6E+81 - value toc large for the range of real constant values
2.4 Cther Types of Constants

2,4.1 Double Precision Counstants

it is necessary to use a higher precision than that
for real values. This means that a greater
igits are necessary to provide for that higher
igher precision values in FORTRAN are termed

1

'ucs, They are real in the mathematical sense but
ey

For some calcu
used withi
number of gignifi
precision. The
'double precisio:
gccupy more space in the computer store. Double precision constants
can take any value in the range:

A double precision constant is wriffen as a string of digits optionally
:d followad by the capital letter I and a

integer; if not signed, a positive value

containing

optionally sisned onc or two

1;.) uSSLrl-lCL...

Examples of double pracision constanis and the velues they represent ave:

1.234567890D~2 0.012345674200

] . RIaTaY; SR
~12D0 =12, CLGOCG0S

nes in the mathematical sense;
ary part. In FORTRAN either~-ora

.
both the rasl and DMATINLTY parig rnny be moaro, | ’ .

i

.L" k=)
constant (representing the imaginary part), right parenthesis.

yrrenthe

DY Jdex constant is written in the form:

A e

ig, real consiant (ra—:-.!aresenting the real part}, a comma,

The real constants may b2 optionzlly signed; if unsigned, a positive value
1s assumed. They mav take any of the forms and values for rcal constants
described in Section 3. -

Examples of complex constants and the values they represent (j=/ ~1) are:

(- 1

-~

U

» T3y -1.0+.3j

(25-5,5.6789) 0.0000245.6789]

»

(+6. 7, -2154) 6.7-20000, 0j
(O.G,mé.) -6, 03
(2.?,0.0) : 2.7

2.4.3 Logical Constants

and

o
o

type variables (
r

the

are used in conjunction with FORTRAN logical
ection 2. 5.8), There are two logical constants permissible
£ lean values true and false, They are written:

. TRUE..

LFALSE

i. e, the name of the value preceded and followed by a decimal point

Z.4,4

code,
compatibility, only those characters in the standard FORTRAN character

Hotlerith Constants

‘A Hollerith constant represents a string of characters which may include
any characters having representation in the 900 Series internal character

with the exception of newline {see Chapter 1}. For standard FORTRAN

. set should be used..

" - 3 .

Hollerith constants are written in the form, unsigned infeger (positive},

capital letter H and a string of characters. The number of characters in

IHX
28HTHIS IS A HOLLERITH CONSTANT -

14H#%3oF (=), +END/

a string, counting spaces (t)lanks) as significant, must be egual to the
integer value before the character H. -

Examples of Hollerith constants are:

The only positions in whichk a Hollerith constant may appear in a FORTRAN
program are: ' '

- . page 16

a) In the argument list of a CALL statement,
b}- Ina DATA INITIALISATION statement.

NOT E: Although a Hollerith string may appear in a FORMAT statement,
in the same form as a Hollerith constant, in this use it is not
strictly a Hollerith constant,)

Hollerith constants are represented in the 900 Series store by bebit
characters in 900 Series internal code., They are packed 3 to an 18~bit
word and ieft justified; i, e. the first character is in the most significant
bits of a word and zeros {spaces) are used to pad any remaining bits of
the word. '

The maximum number of characters that can be stored in a variable by
a DATA statement contazining a Hollerith constant will depend on the type
of variahle:)

One word integers 3 characters

Two word integers 6 characters ;
Real variables : ' | 6 characters

Double precision variabl‘es 12 characters

Complex variables) 12 characters

NOTE: Programmers must-be careful when transferring programs

containing Hollerith constants between different types of
machine. Programmers are advised not to use Hollerith
constants unless they are essential to their program. The
inexperienced FORTRAN programmer should avoid their use
altogether.

2.5 Variableg

2.5.1 Definition

"Wariable! is the term given to the identifier of a value and the location in 7
which that value is stored. This value may change according to the use
of a variable in either:

a) A specific program or subprogram, or

b) - A number of programs, subprograms to which it is COMMON
(see Section 4.2)

The location in which this value is held can be similarly either:
a) Unique to a specific program, sub-program, or

b) Commeon to a number of programs, sub-programs.

Page 17

Variables {(including subscripted variables) can be of the following types:
Integer
Real
;
Double precision
;
Complex
chi}‘.al
i :
Forimany pregrams only integer and real variables need be used. The
inexperienced FORTRAN programmer is advised to leave the consideration
I . - -
of ?zher types until the language is thoroughly understood.
H " -
r

2.5,2. Uses of Variables

a) As common variables - * When COMMON to a simber of
’ programs, sub-programs, In this
instance their identifiers will be
declared in a COMMON statement
within a2 FORTRAN program.

b} As local variables - ¥hen used in a specific FORTRAN
program or sub-program.

c) As formal parameters - When specified in the argument list of
a FORTRAN 'FUNCTION' or
NSUBROUTINE' statement; the variable
is regarded as a formal parameter
(argument) within that function or
subroutine.

In any of the above nses the variable name may be subscripted if its identifier
has been declared as an array name by means of a specification statement
(see Chapter 4). '

2.5.3 Identifiers

An identifier is a name given by the programmer fo an entity within a
FORTRAN program. An identifier may be the name of:

A variable
An array (see Chapter 4)
A FUNCTION or SUBROUTINE program unit (see Chapter 6)

A COMMON block (see Chapter 4).

Wifhin a unit of FORTRAN program an identifier can be used to name one
entity of one of the types listed.

Paze 18

If an identifier is not explicitly declared to be one of the types stated, it
is assumed by the compiler to be a real or integer variable (An identifier
is explicitly declared by writing it in a SPECIFICATION, FUNCTION, or
SUBROUTINE statement). - '

An identifier must conform to the following rules:

a) It mnust be a string of letters or letters and digits (not including
spaces), the first character of which must always be a letter.

b) It may contain irom . one to six characters, but must not exceed six
characters
c) If the first character of an identifier is Q, the second character

must be U, unless it is an identifier defined in a standard scftware
manuzal, Strictly this rule only applies to the names of COMMON
blecks, SUBROUTINES and FUNCTIONS, and to identifiers of the
general form On, where nis a set of digits. This rule prevents
cenfusion with machine code and software global identifiers.

d) if the identifier is the name of an integer variable, array, or
FUNCTION, it must commence with one of the letters:

LJ, B, L,M, or N

an exception to this rule is the identifier included in a TYPE
statement {sce Chapter 4).

e) For real variables, arrays and FUNCTIONs, the first letter of an
identifier can (with the exception of identifiers included in TYPE
staternents) be any letter other than:

L3, ¥, L, M, or N,

An identifier oceurring in a FORTRAN progranﬁ unit which does not appear
in 2 gpecification statement {see Chapter 4), or as 2 SUBROUTINE or
FUNCTION name, is assumed to be a real or integer variable of the type
immplied by the first letter, f

These rules for identifiers must be observed at all times; of particular
importance is the distinguishing between real and integer variable
identifiers. In some instancesaviclationofthese rules willcausethe PORTRAN
cornpiler to. output an error messages but as all errors cannot be covered,
the possibility of a program giving incorrect results is present. For this
reason many programmers will consider it advisable to explicitly declare

~ell identifiers by means of Type statements. (Use of a Type statement

meay override the implicit type given by the first letter, see Ghapte!:x‘ 4}.

Frorm the preceding paragraphs the need for accuracy in assigning
identifiers is evident and this need cannot be over stressed.

-4

Page 19 -

Examples of acceptable integer variable identifiers are:
I | |

KLM

MATRIX

1,123

Examples of incorrect integer variable identifiers are:

ABC (incorrect first letter uniess an explicitly declared integer)
5h (does not begin with a letter)
7378 {incorrect character viz. dollar sign)

INTEGER (too many characters)
J34.5 (incorrect character viz. decimal point)

JOB-STEP (incorrect character viz. hyphen, and toc many characters)

Examples of acceptable real variable identifiers are:

AVAR' : o e o s - | |

FRONT
¥009

QuUlIz

Examples of incorrect real identifiers are:

.

QA1234 (letter following Q not U)
SERVICE (too many characters)

8BOX {first character not a letter)

*BCD {invalid character viz. asterisk)

KI.J1 (invalid first character unless explicitly declared real)
A+B (invalid character viz. +)

2.5.4 Integer or Fixed point Variables

hese may take any integer value (including zero) in the range!

ra - -
~1310724value%k 131071 Co
If this range is exceeded, overflow occurs; however this error is not
detected, except on real to integer conversion.

Integeér variables occupy one 18-bit word in the 905 store. However, the
FORTRAN standard specifies that an integer variable takes the same number
of logical storage units as a veal variable. Therefore two words are
reserved for each integer value, unless the option bit to select single word
packed integersisused (see Chapter 9). This optionwill save store, butmay

‘approximation than tl

lead to incompatibility in the use of COMMON and EQUIVALENCE
statements when running FORTRAN brogram on computers other than
905 Series 18-bit machines. '

When the two word option is used, the first word contains the value, the
second will (unless used for a Hollerith constant} be spare.

It is important that all units of a program be com pued with either the
one or two word option applied. A check is made b by the lcader that this

is so; if not, at load time an error message will be output. If the pro-

gram does not contain integer or Iogx:al arrays, this check will not be
performed. -

2.5,5 Real Variables

These are held in store in floati ing point form; i,e, a fraction times a
1

power of 2, They must be in the range:
-263<va1ue{ 263
i.e. ap“roxu 1ately:

~9x10182 value“" 9xi0l8

If this range is exceeded at run time exponent overflow erroxr is reported
Or continuation, the value is assumed io be the largest possible magnitude
number {of the correct sign).

Real numbers are held tc an acrwuracy of approximately 8 decimal dxgﬂs
(28 binary bits),

If the magnitude of a real varizble becomes less than 204 (1{}"’19 approx. },
its value is autematically set equal to zero. This action is not reported as
an error. : i

2.5.6 . Double Preciszion Varisbles
These variables are used to © represent real numbers to a finer degree of -
used for real variables, A wider range of values

is also allowed,

They are held in the stere in three word form. For compatibility with
standard FORTRAN, double precision arrays use four words of store

per siement.

The range of values allowed is approximately: .

~10300 yatue £ 16300

If thig ranae is exceeded 2t run time, an e~ponent overflow error is
output. The numbers are held to an accuracy of 10 decimal digits (35
binary bits). :

Page 21

2,5.7T Complex Variables

2.5.8 Logical Variables

If at run time the absolute magnitude of a double precision value becomes
less than 10-300 approximately, the value is set cdle“:.LlCalI“’ tc zero.
This action is not reported as an error.

These are stored in the form of a pair of real values. The first value
represents the real part of the complex number, the second part the
imaginary part.

In 905 FORTRAN, comp},ek va 11»0,{@5 occu},y four store locations. The

limits and accuracy of real variables {see Section 2.5, 5} apply to each
part of the complex variable,

These variables may take two values onIy' TRUE or FALSE. Irvs 905
FORTRAN, they normally occupy two words of store, but Oc:cupy only
one word if the one word {packed) integer option is used.

They may be used in logical assignment statements and logical IF
statements {see Section 3.4).

2.5.9 Arrays (Subscripted Varizbles)

Variables in FORTRAN can be grouped into sequential sets in the form
of ocne, two, or three dimensionzal arrays of data. A one dimensional
array is sometimes termed’a vector', a two dimensional array may
represent a Matrix, The use of arrays enables large guantities of data
to be handled efficiently.

In rnathematical notation it is permislsible to write:
X1, xz, X384, 00 vienans Xn

and in FORTRAN to write:

X(1), X2}, X(3), X{4),X(N) also:

mlilsrril,Z:lnl,aclo-..l.......'..mllj

mi’ ll mi, z;mi’3. 7...7-; mi'j hence, FORTRAN gives:
M1, 1), M(L, 2, M{1,3), ..o LML, T)

M(I; 1), M(L 2 M(L,3). oo e el M(I,J_)

The name of an array is an identifier formed accor ding to the rules

stated for ordinary variables. It must be explicitly oeclared as the name
of an array by a DIMENSION statement or by dimension information in

‘another specification gtatement (see Chapter 4),

Page 22A

in the examples given previously, subscripts 1,2,3 etc. are integer
constants and M, 1 and J are integer variables. All allowable forms of

subscript are listed as follows:

-

FORM EXAMPLE OF SUBSCRIPTED VARIARLE

k | ' X(16) | ‘ |
T VARRAY (INDEX)

Tesk , - IARRAY{2HIN)}

I+4 | - z(3+2) "

-4 - Z2(KAPPA~100)

oI+ £ _ | A{10%N+5)

K#lef T T A{2¥IN-1)

Where:

k and { represent any positive integer constants
I may be replaced by any integer variable,

NOTE: No other subscript forms are permissible. As indicated in the
examnples given, each subscript of 2 two or three dimensional
array must be separated by a comma,. Viz. '

X(1,7,K)
MATRIX (3*KAPPA-1, 2%J+1)

If declared as an array of the correct explicit/implicit type, any of the
variable types, integer, veal, double precision, complex and logical may
be used as a subscripted wvariable.

The value of any subscript, either a constant or an expression, must be
positive, greater than zero, and must not exceed the maximum value for
that subscript in the specification statement by which it was declared. The
number of subscripts of a subscripted variablemust correspond with the

number in its declaration (use in an EQUIVALENCE statement excepted).

2.5,10 Storagoe of Arrays

The elements of arrays with more than one subscript are stored with the
first element being the value which most frequently changes when counting
the clements in sequence. For example, if the elements of a two sub-
Scriﬂpted array represent rows and columns, the rows element wil}i be
stored first as it will change more frequently than the column - element,

Viz,

R1 Ct A(1,1)
R2 - cl A2, 1)
R3 Cl “A{3, 1)

Page 23‘

R4 C1 CA(4, 1)

RS c1 o A(5, 1)
RI C2 . A(1,2)
R2 . cz A(2,2)
R3 c2 A(3,2)
R4 Cz . A(4,2)
R5 c2 A(5,2)
etc,

In precise form, the storage of the array clements of two or three dime
ensional arrays correspond to storage of an equivalent one dimensional
array as focllows:

For a two dimensional array A 1im, 1l n element 1, cerresponds to the
element i+m(j-1)

¥or a three dimensional arrvay A 1: E, lim, lin elements 3,3,k correspond

~ to element i—!—-g(j«l)-:-fnl(kwl)

Examples of arrays are:

a) _ Elements of Real Arrays:
A1) |
DOG(3, THITEM~5000, 2% MEAN+10)
b} Elements of Integer Arrays:
LIST(4*JULIET) -
JIG(2%1<9, 453 +100)

An array comprising three rows and three columns could be shown
initially in mathematical notation thus:

23,1 23,2 é1,3
azl i az’.z_ 3.2',3
a3 az, 2 ag 3

FORTRAN subscript notation of this array would be written thus:

A1, 1),4(1,2),A(1,3), A(2, 1), A(2,2),A02,3)....... ete.

Pa,g'e 24

The identifier for subscripted variables is subject to the rules stated for
non-subscripted variables (section 2.5}, '

2.6 7 Expressions
2.6.1 General

A FORTRAN expression is a rule for computing a numerical value. In
many instances an expression consists of a single constant, a smngle
variable, a single function reference. Two or more of these elements
may be combined (using operation S'}TIleO}.‘) and delimiters) to build more
complex expressions.

Each operaftion is represented by a unique symboi thus!
"+ indicating positive or addition

indicating negative or negation

it

E

indicating multiplication {used instead of the character X to avoid.
confusion with the letter X) ‘ '
/ indicating division , B

%% indicating exponentiation {i.e, raising to a power).

The delimiters used are as follows:

(} which enclose subscripts or parameter lists, and modify the order of

E
evaluation cf the terrms within an expression,

space,” Only used within an expression to (:lal‘lfr reading of an expression,
P Y 3
but ignored by the compﬂer.

NOTE: Parentheses may be used to group expressicns in 1‘1 _;a_me
' manner to that in mathematical notations, Thus (X+Y)” mus
written {X+Y)3=3 in order to convey' the correct mieaning, An
~ expression as ambiguous as:
' Bc " . .
AT must be written as A**(B*”G) or (A#%F) x#C accerding to the
i requirement intenled,

(D

2.6.2 Order of Evaluation

The current values of the variables within the expression are first
determined. This may necessitate the evaluation of subscripts or functions
before evaluation of the main expression can commmence,

When the order of operators within an expression cannot be definad clearly

by the use of parentheses, the order of evaluation (of other permirted
operators) is as follows:

a) Exponentiations
b} Multiplic ations and divisions

Additions and subtractions . . Co.

e 5
age 25

Thus, the two expressions which follow have equivalent mathematical
meanings!

a) A¥B4C[DwE#5T

b) (A4B)+(C/D)=(E++F)
Within a seguence of consecutive multiplications and/or divisions or
additions and/or subtractions, in which the order of evaluation is not
clearly defined by parentheses, the meaning is evaluated from 1

right. Thus the expression A/B*C would mean (A divided by B) times
and not A (divided by B times G} and I.J+K would mean {I minus

and not I minus (J plus K}, . - R

Sub-cxpressions with parentheses are evaluated in the same manner but
not necessarily in the same sequence as subscripts or functions; the
value thus attained is used to assist in the evaluation of the main expression,

The effect of division extends only to the next element, for example:
A/B*C is equivalent to (A/B)*C or A*C/R -
A[B/C is equivalent to A/[B*C)-

The inccrrect oerder of evaluation of an expresgsion can result in a loss of
significance or even in a failure to obtain an answer. K. g. In the
expression ! A%¥B/C if the values of A, B, and C were approximately 1030,
the result of the muliiplication would be 1050 angd this result is ocutside
the permitted range for values of real variables. However, after division
the result returns within the permitted range, If the computer cannot
epresent an intermediate result (e. g. 1060), the outcome of the evaluation
will depend on the mode of working (i.e. Integer or Floating Point). The
cutcome in integer working is for the evaluation to continue ard this results
in an erroneous answer, The outcome in floating point working is for the
evaluation to stop; an error message is cutput and continuation of the
program is left to the discretion of the operator.

2.6.3 Treatment of Integer and Real Values
The evaluation of an expression containing integer and real values is

achieved by initially converting the integer values or intzger subeexpressions
into real values.

2,6.4 Results of Intsger Division

The result of an integer division is always an iﬁteger’ truncated so that
the fractional part of the exact answer is omitted. Hence,

7/4 gives the result 1(not 2)
~5/3 gives the result -1 (not-2)

- B ‘ . | PageQﬁ

[

[P

<

These resulfs mean that the remainder of an integer division can be

easily found, these results some

efiects, e.g.

However,

5/3%6 gives a result of 6
5/(3%6) gives 2 result of 0

5#(6/3) gives a result of 10

2.6.5 Exponentiation Results

An integer, real, double precision or
power always gives g res
Precision or complex respectively.

e e
Erid

NOTE: This means that the expression
always give a result of zero due to

A real or double precision value may be rai
power, ‘The

'

3.3) are not permitted,

Attempts to
negative

exponentiate zero by zero and a

2.6.6. Types of Allowable Expreosions

The rules for th
It should be no

@ mixing of types of express
ted that a subw~expression of o
r type by the use of the functions:

FILOAT DBLE SNGLE

inte ancthe

IFIX

REAL

times preduce unexpected

complex number raised to an integer
ult of the same ty,

pe; i.e. integer, real, double

(where J is negative) will
the truncation rule,

sed to a real or double precision

result is double precision unless both values are real,
Coembinations of exponentiation other than thas

e.listed in the table {Section

negative real number by a

real power will give rise to an error at run time,

ions are given in Chapter 3,
ne type can usually be converted

AIMAG

Page 27 & 28

3.1 Format

A FORTRAN program consists of a sequence of statements. These
statements can be divided into two types:

a) Executable statements, which are obeyed when the program is
run,
b} Non-executable statements which further define the meaning
of executable stawmq ts. These statements may be divided into

four types:

{i) Those which provide the compiler with information
- e.g. COMMON statements.
(ii) Those which further define run-time operations,

e.g. FORMAT statements,

(iii) Those which provide information during both compllation
and at run-time, NSION statements.

{iv) Those which contain information which ease reading of
pregrams, bul have no actuzl effect on the compilation
or vunning, i.e. Commients,

3.2 . Aﬂthrnﬁ?.i ﬁsﬁigmntz.":Satem,nto

To enable a new value of a
statement is necessary. T1

variable tc be computed, an arithmetic assignment
12 statement takes tl*e form

written without a sign arnd,

-

An Arithmetic Assi to I‘ORTE\AH to compute
ive hat value to the

is assigned to an integer
g ;

the value of the exp
variable named on the left. YWhen 2 rezl resul
variahble, then: '

: :nt statement is not used as
notztion, Thus it is not permissible to write a
¥

The eq als
in normal
statemaeanit Z-RH¥

£ ‘rich the value of Z is unknown
whtia the other volues a

legal form of arithmetic
tend gide of the statement

Page 29

b)

ariable on the laff may be subscripted.

wie of an expression i

g
rasult is converted into

to the varis

of resiriciions on arithmetic modes,

3

Wi ‘31 the basgic operations add, subtract, muliiply and divide, an

element can be combined with another element of the same type,

or z real element may e combined with a double precision or
com;)u:. clement, .

of a and b and on the
lways real. Ifb is

The validity of =
type ef b, The re

1, the operation is
other instances, the

T
¥

p
vahd umc:;s both 2 and b are zero. In al
resulf 1s that obtained by multiplying 2 by itself ; bg imes and
(if b is negative) taking the reciprocal. Ifb is a real variable,
constani, Oor expression, the operaticon is only valid if a is
positive. The result {(where it exists} has the value exp (b*logg(a)).

An integer, real or double precisicn value may be 2ssigned to an

VL
mLLge*, real, or double pracision element in an arithmetic
assignment statement., A complex value may be assigned to a
complex element only,

A relational operaztor can combine two ex pressions of each of the
following types:

(i) Integer

(ii) Real

(iii Double precision

(iv) Real with double precision

905 FORTRAN provides a wider range of mixed modes with basic

operations of add, subtract, multiply and divide in that an integer

‘element may be combined with a real or double precision element.
Incorrect use of this facility may result in an object pr ogram

which is’appreciably less efficient than it might stherwise have
been: .

st ' . - . TPage 30

A velational expression is one that compares integer, real or double
precision values by using the relational opervators:

.LT. | |

— [LE.

CEQL

. NE.

.GT.

.CGE,

- The table which follows indicates the only permissible combinations (where:
R=Real, I=Integer, D=Double precision and C=Complex).

-

Add, Subtract, Multiply, Divide Exponentiation

B 1 I | D |c A S 1 {r D lc
1 |1 «] D* | X I I | x | x|x
-~ R IR | D |cC R R|RrR |DIx
D =D | D | X D DD |Dx
..... ¢ |xjcIx ¢ C clx |x|x
- Assignment Réiational
NE=p
- va ! |R | D |C I |R |D|C
S A IV VA I 1 AR LR NE R D'
B R |/ |/ J X R =1 Y X
D |/ I/ J X D oS X
- c |x Ix Ix |7 c X |x |x Ix

{The entries in the MATRIX show the result type: and X indicates when a
- combination is not permitted; [/ indicates that combination is permifted)
v with % indicates that this combination is an extension to ASA Forivan,’

v

3.4 Control Stetements ' 3

Control statements are used when a ‘oreé'kmis required in the ocrder in which .
- executable statements of a program are to e cbeved. A breakdown of the
elements available for making transfers of control in the FORTRAN language
follow, ‘ : - -

2.4.1 Statement Numbers o Labels

¢

A statement number is an unsigned positive integer, which is prefixed to
a statement. The nuimber can consist of from 1 to 5 {mazimum) digits and
is coded in columns i tc 5 of the coding sheet, Statement numbers may :

DM .

run in random order throughout 2 program, but no two statements in

a prograrm unit may have the same steiemeant numboer. Stataoment nurmnmbers

i

are used to provide for interaction boetw
identily to the numbered stztement {or trans

references.

3.4.2 GOTO Sratementa

A GOTO statement providzs the means of transferring control to any

3 — T -y e g . G 2 . - o £ N
other than the noxt in seguencd uianle staloment

herwise it could

1} The unconditional GOTO statement
f_ 2) The computed GOTO statement
) 3

The assigned GOTQO statement

W
L et

3.4.3 - Unconditional GOT O Statemant
Unconditicnal GOTO Staiements are written in the form:

GOTO n

where n is the statement number of the next staternent to be executed.
Contrel is transferred unconditionally.

Example:

e GOTO 15
15 GOTO 8 ' -

3.4.4. Computed GOTO Statement
- A computed GOTO statement provides the user with a n-way switch based
. ' on the value of an integer variable. The statement has the formi

GOTO (nl‘,nz,..........,nr}.l),i

where ny, Ny, N3, ng. . e n,, are m statement numbers (which need not all
: be different) and i is a un-subscripted integer variable which, whenever
— the statement is obeyed, must have a value in the range 1 to m.

o . ook N Page 32

Example:

GOTO (4,600,13,9,526)IAC

If the value of IAC is 1 then contrcl would be transferred to statement

““““ - 4, if IAC had the value 2 control would be transferred to statement 600 and
so on. If the value of the iatéger variable lies outside the range, at run
‘time an error is reported.

3.4.5 Assignment Statement and Assigned GOTO

— The combination of the GOTO Assignment statement and the Assigned GOTO
gives an alternative to the computed GOTO. A statement label (number)
is associated with an integer variable by means of a GOTO Assignment,

- At sorne point later in the program this may be used in an Assigned GOTO
statement to branch to that numbered statement., [n programming terms,
it is @& means of presetting a switch.

A GOTO Assignment takes the form:

ASSIGN K TO i

yv_here K is a& staternent label of an executable statement in the current
program unit, '

- H]

i represents any integer variable.

— Once the Assignment statement has been obeyed, integer i must not be
referenced or changed until an assigned GOTO is obeyed. That assigned
GOTO will cause control to be transferred to the statement numbered K,

— The form of an assigned GOTO is . . '

GOTO i, (Ky, Kp, K3,, Kp)

— where i is an integer variable that must have been previously set by a
GOTO assignment. Kj.....K, represents statement numbers (one of

which must be the label number K used in the ASSIGN statement).
i

R |

e L] ..) . . e .)
Note 'that the value set in i is not meaningful, in particular it is not the
numerical value of K.

The ASSIGN statement and its associated GOTO statement must be in the
samne program unit. ' '

Exarﬂpla: '
ASSIGN 99 TO JJ
GOTO 10

99 X=2Z+Y

10 GOTO JJ, (97.98,99, 100)

The equivalert compuied GOTO wonld be

~ GOTO 18
99 X=Z+Y
16 GOTO (97,98, 99, 100}

In 905 FORTRAN
to ensure that ihe integer

o
jna
[
[
o
"
=

of control, using the assi

o

time, than a computed SOTO stateynont

3.4.6 The Avithmetis IF Statd

An Arithmetic IF Stateiment has tho form!

IR{e) Ny, np.n3

where (e) is an arithmetic expression and ny, Dp.Tys BYE ihree statsrment
numbers (not necessavily differenz}. Ceontrol iz iransicrred to eithe:

sipn of e .

NEGATIVE - ny

POSITIVE ny
Example: _
53 I (NX~2) 150, 151, 9%9 , o ' .

3.4.7 The Logical IF Statemnent and Logidal Statern
A logical IF statement is wri‘cten.il'z the form:

IF (e}S

where {e) is a logical expression and S is any ther executable statement

except an IF or DO statement. The simplest form of logical expression
is one that asks a gquestion about fwo arithmetic expressions.

The course of acticntakenby the logical IF statement is as follows:

6]
P
v
¢
(B
=}
ot
om
a9

If the logical expression is false, st
statement executed is the one following the logicel IF unicss S was GOTO
and the expression was true. ‘)

If the logical expression is true statement 5 1
ratement S is not exzceuted. The nesxt
i 1

The power of the logical IT statement can be heightened by the inclusion of
logical operators these are writien in the form:
¢ AND.

. OR.

. NOT,

A logical expression cormbines logical values and/or relational expressions.
A relational expression is one that compares integer, real, or double
precicion values by using relational operators.

.. Pege 34

Relational operators ave written in the form:

Relational

Operators Meaning
LT, - Liesg than
L LE, | I.ess than or equal to
- EQ. , Tgual to .
.NE. ' I\Eoge’/equai te
LGT. : ' Greater thgn
.GE. ‘ Greater than or equal to

A logical assignment staternent is written in the form:
Liogical variable = logical expression

If L}, L2 and L3 are logical variables, the logical assignment statements
written: .

D.LT.EPS.OR.ITER.GT. 20

Ll =
LZ = D.GE.EPS.AND.ITER.LE.20
L3 = BIG.GT.TOLER.OR.SWITGH

would aesign L1 the value . TRUE, if either or both of the relations were
true, and ., FALSE. if both the relations were false.

L2 weuld be given the value , TRUE. if and only if both the relations were
true, - : : : :

L3 would be given the value . TRUE. if the relation was satisfied and/or
the logical variable SWITCH was true. = '

The logical operator , NOT. reverses the truth value of the expression in
which it is declared. ' ' '

The .AND., .NOT. and .OR. s «NOT. combinations are the only onss in
which two operators may be declared adjacent to one a2nother.

An example of usage of the IF statement follows. The arithmetic problern:
P g I

y = 0.5%+0.75 " if X3
y = 0.27X40. 12 if X>3

can be accomplished by combining f:wo IF statements thus::
IF(X.LE.3)Y=0.5%X40. 75
IF(X,GT. 3)¥=0. 25%X+0. 12

It X is less than or equal to (. LE.)3, the statement Y=0.5%X+0. 75 will
be exccuted which is the correct formulae for computing y in fhat case,
If X is greater than (L GE.) 3 the first IF statement is non-execuind, but
the second IF statement is.

* - Page 3%

v

3.4, 8 CONTINUE Srotement

A CONTINUE statement is a dummy (execuia‘olc—) statemment that causes no
action when the object program is executed. It is mainiy used at tha end
of a DO statement to satisfy the rule that the last statement in the
of a DO statement must not be one that can cause transfer of contral.

3.4.9 DO Statement

This staterment makes it possible to execute a section of a program re-
peatedly with automatic changes in the value of an integer variable
between repetitions. It is written in either of the forms:

bBOo n i = my, m,

DO n i = my, n&z, m3

where n = stalement number of the last staternent to be
obeyed before attempting to repeat the loop with
a new value of i.

i = ungubscripted integer variable written without
a sign,

my = the value to be assumed by i the first time the DO
loop is traversed.

my = must be greater than mj) and is the greatest value which
- imay assume (It need not be attained nor, if m33y1,
eed it be attainable), '

3
]
I

is the constant interval of the arithmetic progression cf
values assumed by i (must be?0). '
If this value is ommitted, the value ! is assumed.,

‘m3’is added 10 i at the end of each traverse of the DO lcop. If the new
value of i is€ my, the loop is traversed again, otherwise the loop is
terminated and the next executable statement is obeyed.

mj., my and m3 may be unsubscripted integer varizbles or integer
constants,

When the DO leop is left (because if i were again incremented it would
exceed m,} the value of i is undefined. However, if the DO loop is left
by means of a GOTO statement then the value of iis preserved.

The values of i, ms and m3 may not be altered within a DO loop. But for
one exception a GOTO statement may not cause a jump into a DO loop
that by-passes its initial DO statement. The exception is when the DO
loop is itself left by a GOTO and the values of i, mp m3 have not been
altered; since, a GOTO statement may be used to re~gnter the DO loops.
DO loops must have the following properties:

prope—

{1} The first statement must bean executable staternent.

They may occur within DO loops.

.

(1i1) They may not intersect each other.
(iv) © Terminating statement of a DO loop must not be 2 GOTO

statement {including IF statement) nor a RETURN, STOP,
PAUSE or DO statement, When this situation is requu ed
- a CONTINUE staterment should be used.

The fellewing is an example of correctly nested DO loops

. DG 3071 = 1, 10
Do 3073 = 1, 30, 1

DC 314 INDEX = 5, 15
_ A(LJ) = A (1,7) - B INDEX) - g_ |
314 CONTINUE ‘ : o o o
DG 330 INDEX = -10, 0, 3 | |

DO 329 K= LLB, 12 ‘ | .
IF (B(INDEX+10)) 345, 329, 345

. 329 A (INDEX+10,K) = 0
330 CONTINUE

— - DO 307 XKoo= 1, 10

. GOTO 307
345 | G =404+ 1
i -
GO0 329
307 SHTINUE .
3. "1‘. 1G T\ZAJUSJJ utm.{_ﬁme'}t
stal ent thatcauses the computer to wait until the operator

ompilation is to continue. The programmer should usually
statement which causes a message to be displayed informing
some specizal action to be taken (e.g. load next data tape).
1wy be followed by up to 5 octal digits. These will be displayed

Page 37

3.4.11 0 BSTOP Startement

An executable statermeni which causes the coemputer to abandon the
The program cannot he continued, but it may
it can be re-entared at the beginning with a
matic operating systems STOF will causse ”he

and lost {rom core.

I
; .
An executable statement which
i .
(i f informs the .compiler that it has reached the
; physical end of the program or sub-program that it is currently
! tranglating.

‘i'

3.4.13 RETURN Statement

An executable statement which may only cccur in a sub-program, indicates
that the sub-program has completed calculation; and so control is Lo be
returned to the program or sub-program which called it (1 e. at the
xecutablce statement following its call}. : :

o

‘Poge 38 o

CHAPTER -

ey
.

SPECIFICATICN AND DATA STATEMENTS

Five types of specification statements are permissible in 205 FORTRAN.
They ave: ' :

a) DIMENSIONS statements , :
- b} GCOMMON staternents
T2} , EQUT‘CALENCE statements
d) EXTERNAL statements
o e) _ T’{'le various ‘Tvoe* sta tements, i.e. INTEGER, REAL, T‘,}OUBLE‘

FAFANEEEI F 4

PRECISION, COMP LEX and LOGICAL.

o DATA init alisation stat=ments are also considered. in this chapter.

3 DATA statements are said to be 'non-executable' L. e,

. inforimation to the FORTRAN compiler and do not directly
o in the creation of irstructions in the program to be run.

A DIMENSION statement is used 1o indicate that one or more identifiers
el

are the names of arrays {sub ipted variables). The statement is of the
form: '

CDIMENS i1y 7o {353 i
DIMEN SION W 1 kli): 3 z (.uzf R Vi'l (ln)

J< o
ry {vector} of ¢ eleynents, whnich nlay he referr cd to as:t
{1 v‘(fﬁl.......'«{r‘:'&, oY S .

indicating that v is a
which may be referred

........... V(Cl, Cz)

r\.g that V is a
yich may be

e
[

=
I

9]

~Q

i, and only i{ v is the neme of anexpress formal parameter of a sub-

v’

program (Szetion 6. 7). i can include the names of one, twe or three
5§ W

teger variables which are also formal parameters of the sub-program

o]

1

{

w

cetion 6, 7)
!
!
Lxample:

{
{
{
f

2y ; PIMENSION A{10}, B(5,15), CAT(99)}
By DL\M;\%O ALY, B{5,1),C(1, 1)
! - .
This could enly occur in 2 sub-program which numbered B,C,Iand J
k-mcang its formal parameters. See Section 4.6 for further examples of

D E ENSION statements.

.2 COniE ’O“I Statements ;
it bas been stated that each pregram unit has its own variable names;

the name X in the main program is not necessarily taken to be the same as
the name X in a subs~program. Howevér, if it is necessary for the values
of both X's to be the same, a COMMON statement {(written in both the main-

and-sub-program) can be used.

A COMMON statement is used, in general, to communicate data between
program units (main programs,SUBROUTINES and FUNCTION subprograms).
It informs the compiler that a list of variables and/or arrays in one

program unit is to Share the same block of core store as a similar list(s)

of variables/arrays in other proéram units,

A COMMON statement takes one of the following forms:

COMMON list e.g. COMMON A,I.K, LAMBA
Oor
COMMON/xy/listy/xp/lista/ [x,/listy

e.g. COMMON/BLOCK/B,J,X/BLOCKZ2/Z,KK

This second form is described more fully in 4.2.1. The first form
describes a block of store locations termed 'blank! or 'unlabelled! common.
The compiler allocates this block of store and assigns the list of variables/
arrays fo this block in the order they appear in the list. '

If there is another COMMON statement in the same program unit, the
first item in that statement is allocated store following the last item in the

prewvious statement,
The list or lists may consist of: variables of any tape, array names of

any type, or array declarators of the form V{i}. V(i) takes the same form
and same meaning as the V(i) in a DIMENSION statement, see 4.1.

Page 40

It is often convenient to have the same identifiers used in the corresponding
positions of COMMON lists in different program units. However, there ig
no feed for the names to be identical; only their order within the COMMON
Listis important, '

4.2.1 COMMON Statement with Named COMMON

Apart from the block known as blank common area, there may be one gr
more labelled (named) common blocks. Tha names of such blocks are
identifiers chosen by the programmer. In choosing the name the
programmer must not use the name of any program unit (FORTRAN or
MASIR} or intrinsic function; there are no othexr restrictions (The

name has no implicit or explicit type, and it can even be the same name
as a variable in the program, without having any relatioﬁship with that
variable). The compiler uses the name of a common block only to aliocate
the block to the same core store area as common block{s) with the same
name in other program units.

Named (or labelled) common blocks are described by the general form of

COMMON statement: ‘ '
COMMON/x; /1isty/xy/list,/ I xp/listy

Example:

.

COMMON/BLOCK/A, B, C,K(20), z{10,10)

Each x is the name of a common block, Ifé name is omitted between the
slashes, the corresponaing list describes blank common.)

Example: '

CQMMON,{B 1X,Y/ 11,3(20)

ITand J are in blank common.

If the blank common is the first described, the two slashes may b2 omitted, .
for example: = o o Cai e

COMMON I,J{20)/R1/X,Y
m

3
H
[N
<
—ta
O
i
n
o
Il
{1
o
e

"
Jos
®
.

would have exactly.the same effect as the

- If a named or blank common klcek is defined in more t
statement in a single prograr anit, the aas i
in the order in which they appezr; this enahle

- the positions and total size of COMMON.
Within one complete executabla program, the siz

- block must not be greater in any prograrm unit t

.

T

first unit, encounter sd-by the Lordar, in which i
warning is printed if the sizes zrc not the szme.

such restriction on the zize of the blank cornnion

et s T =1 T A R R S S AT 3= %
GO "‘-sO."i AN gy 7 S SRS /\.f‘l()\), Li]f:f, 2}

a2l

‘n that order in the program coOn-

TR T - m ey bt sy -1 -~ 3
in the propram containing {ne second

same storage location

ook labelled Bl would
t

{assuming all the f{ore

[+
voriables wore pot mentionad in 2 DIMENSION
. -

O =ziements O1

statement elsewhere

e
F and the 10 elements of . lao contain

e overlap between the
Gifficulty (sha combiler
4 :

1

4.3 EQUIVALENGE Statements

EQUIVALENCE statements are written in the form:

EQUIVALENGCE (}.:1), (kz), kn)
where: o '
each k is a list of the form: ’ -

T T -2 each a is the name of a variable or an array

clement.

An EQUIVALENCE statement assigns two or more variables within the
same main program 07 within the same sub-program to the same storage
location. :

If one large array is te be equivalenced to one or more small arrays
and all are to be in COMMON, the larger array must bhe declared in
COMMON and the smaller not explicitly declared in COMMON.

An example of an EQUIVALENCE statement is given in gection 4.6.

The array element name must have only constant subscripts. It is
possible to use a single constant subscript for an array with two or three

dimensions e.g.
DIMENSION A(3,4)
EQUIVALENCE (X,A(S))

This would cause X to share the same stove iocations as element A(Z, 2).

If two variables occupying different numbers of computer words are
equivalenced together, the first word of each variable occupies the same
storage location. - T '

L | o . }—gge_42

The eifect of an EQUIVALENCE statement may add a variable or an array
to a common block, This may cause an increase in the size of the common
block. However, an EQUIVALENCE staterment must not extend a common
block 'backwards' i.e. alter the posgition of the first variable or elerent in
the block. :

Examples:

DIMENSION A(20)

COMMON/BX/X

EQUIVALENCE (X, A(1))

are valid, and would cause block BX to occupy 20 store units (i.e. 40 words),

but:

EQUIVALENCE (X, A(2)) "

would be illegal, since X is the first location of BX, and this would put

A{l) before X. : , |
: I

4.4 Restrictions on Sequence of Iteme in Equivalence Group

In an EQUIVALENCE group {(i.e. a set of parenthesised items in an
EQUIVALENCE statement), there are two restrictions on the sequence of

items, they are: .
1) If a group of equivalenced items includes an item in COMMON,

that item ronust be the first in the group.

2) If the same appears in more than one group, that name must
appear at the beginning of the aecond and any subsequent group
in which it appears. : A

4.5 Restrictiong on Names in Specification Staternents

Within a single program unit, a name may occur in any or all of the
following statements:
DIMENSION
COMMON

Type statements
The following rules are to be observed:

1) .. A name may not occur in any of the forms of statements given
in the previous paragraph more than once.

2) A name may not be declared as an array (by having dimension

inforrnation) in more than one statement.

3) A formal parameter (dummy argument} must not dppear in a
COMMON or DUIVALENCE statement.)

e

The name of 8 COMMON block must notl corre spond to tha name
of any sub—pl ogram whether in FORTRAN or MASIE .

W
p—

3

4.6 Examples of Statemeauts
in relation to the store map given following this paragraph the specifi
in program CAT are:

SUBRCUTINE GAT

DIMERSION A(5), 1{3, 2), B(2), L(3)

COMMON A,LJ,G '

COMMON X, LL

coupled with the specif lCdf.lOn sub-program DOG (see map):

SUBROUTINE DOG : o i ;
DIMENSION TAIL(6}, I ,{3) :'

COMMON EAR,BARK, TAIL, ¥, K, BK
EQUIVALENCE (BX, L(1))

this would lead to the aliocation of space {in the first 22 locations of the
COMMON area) indicated inthe map below dbsumlrg the "packed integerg!

- cPhon Was in use.

LOCATION VARIABLES DECLARED IN
CAT DOG
COMMON } A(L) } EAR
+1 -
-
+2 k }
A2 BARK
3 _ (2)
14 - 1
' A3 TAIL(
15 _ (3) i (1)
+6 } A(4) } TAIL{2)
+7 .
+8 ATH
} A(5) } TAIL(3)
+9 - -
+10 | RRICIRY TATL{4)
+11 (2, 1)
+12 (3, 1) 1 TAIL(S)
413 (1, 2) |

; S - . Page 44

LOCATION VARIABLE DECLARED IN
- 4 . CAT : DOG

+14 iz, 2)
+15 1(3, 2) TAIL (6)
16 1 } .
+17 ") : . g
+18 } G K of DOG
+19 A K of CAT } S L)
20 j LL BE 1)
+21- o T OL(3)

4.7 Usge of Store Map

Programmers using COMMON and EQUIVALENCE are advised to prepare
a store map similar to that given in section 4.6 Eiffecrs like the overlap
of J and G of CAT with F and K of DOG are not erronecus, Lut their effect
is unlikely to be that desired by the programmexr. If used correctly,
COMMON and EQUIVALENCE statements save space and simplify the
calling and constraction of sub-programs. If used incorrectly, they -

can cause chaos.

4.8 . Type and EXTERNAL Statement

4.8.1 Type Statement

These consist of one of the declarations:

. ‘iv“'\
INTEGER

DOUBLE PRECISION - o -
COMPLEX |
LOGICAL

followed by as many variable names as necessary {separated by commas).

SOUBLE PRECISION DENOM, REVX, TERM, N

COMPLEX T, N1, N2, D1
LOGICAL A}, AZK

A'type statement is used to inform the compiler that the given names are to
be associated with variables of the appropriate type. In the case of Double

- Precision, Complex and Logical variables a Type statement must be used.
For real and integer variables a Type statement may be used to override
the implicit type suggested by the first letter of the identifier.

The Type statement must precede the first use of the name in any exccutable
‘ statement in the program. In the examples, thel from the INTEGER state-
B ment and the variable X from the REAL statement may be cmitted since

"the names are identified integer and real respectively, by their first letters.

N 4.8.2 - EXTERNAL Statement

An EXTERNAL statement has the form EXTERNAL X3,X2.X3,..., Xn
where each X is the name of an external subroutine or function.

905 FORTRAN permits the use of a functicn pame as an argument in a
sub-program call. When this occurs, it is necessary to list the function
name in an BEXTERNAL statement in the calling program,to distinguish
between a function name and 2 variable name, - :

Example:
- EXTERNAL SIN, COS, SQRT

CALL SUBR (2.0, SIN,RESULT)

WRITE {6, 129)RESULT
129 FORMAT (10H SIN(2.0)=, F10.6)
| CALL SUBR (2.0,COS, RESULT)
| WRITE(6, 130)RESULT
~ 130 FORMAT(10H COS(2.0)=, F10.6)
i CALL SUBR(2.0,SQRT,RESULT)
L WRITE (6, 131)RESULT

131 FORMAT(11H SQRT(2.0)=, F10.6)
s STOP |
. END

SUBROUTINE SUBR(X,F,Y)
- - Y=F(X)
RETURN

- : END

This program contains a main {calling) program and a SUBROUTINE
sub-program. The program contains only one executable statement vig.

Y=F(X)

The arguments listed are X, F and Y making the function F a matter of
choice in the sub-program call. The main program calls this sub-program

" three times. FEach time the value of ¥ is 2.0 and the actual variable

corresponding to Y is RESULT. The arguments corresponding to F are
successively S5IN, COS, SQRT; these three supplied function names arve
listed in an EXTERNAL statement,

4.9 DATA St'a_t-err_;ent

¢

Thé use of the DATA statement is brought about when it becomes necessary
to couple data {from the source program) into the object program. DATA
statements take the form: ' .

DATA list/d;, do,......dp/, listfdy, dp, G B dmy
In this symbolic description a 'list' contains the names of variables to
receive values, the d's are values and the K (if used) is an integer constant.
Example: '

DATA A,B,C/14.7,62.1,1.5E-20/

. This statement would assign the values 14.7,62.1 and 1.5 XIO-RO to AR

and C respectively. This action is performed at the compilation and not
at the time when the object program is executed. .

The values assigned by the DATA statement are placed in storage when
the object program is loaded and that is end of the actions required by the
DATA statement.

It is legal to redefine values of these variables but having so acted it is
not possible to re-execute the DATA statement to put the variables back
to their original value. ’ _

The two statements which follow have identical meanings, choice of |
statement is 2 matter of personal preference;

DATA A/60.75/,8/10.0/,C/5.0 - R
DATA A,B,C/60.75,10,5.0 : '
Any of the constants may be preceded by a multiplier, that is an unsigned

positive integer constant and an asterisk, If the rmultiplier has the/value n
this is equivalent to writing the constant it precedes n times.

Example:

DATA X,Y,Z,W/3%0.0,1.0/

o 7
Page 47

This will cause X, Y and Z to have initial values of zero, and W to have =
value 1.0,

NOTE: If these values are changed, they will only be reset if the
' program is reloaded into core store.

‘The staternent which follows assigns the value 10.5 to 211 five variables:

DATA A.B,C,D,E/5%10,5/

A DATA stetement maycontain Hollerith text, for example:
DATA DOT, X, BLANK/1H., 1HX, 1H/)

If the number of characters of text is not the same as the number of
characters ina storage location, the characters are left justified and
space filled. In the example given, the point would be Jeft justified in
DOT and the remainder of DOT filled with blanks: X would be mmzlaxly
treated. BLANK would be filled with blanks as intended. :

The iteme in the list must not be in COMMON (b lan}\ or named), nor can
they be formal parameters (dumray arguments). They may be subscripted
variables with constant subscripts.

4.10 Restrictions on the Sequence of Items within a Subprogram

In 905 FORTRAN the statements which make up a program unit must
appear in the fo]lowmg sequence,

1. - SUBROUTINE or FUNCTION (except in a main program)

2. Specification statements

3. DATA Statements

4, . Statement function definitions

5, - Executabie statements, FORIVLAT gtatements and in-line

machine code,

6. - END statement

CHAPTER 5: INPUT AND OUTPUT

To read input or ‘write output g
four categories of infor

ata requires the Programmer to deglare

mation in the source program. They ave:

1} Selection of input or output device, which ig 1

:andled by a combinae
tion of the Statement verb an

d the uniy designation,

2) The varia

1 ‘ € designated op
whose values are to be sent to an cufput device, Thege are specia

fied by the ligt of variables in the inpuat or cutput statement,

3) The order in which the values are to he transmitted,

is governed
by the order

in which the variablesg are named in the ligt.

4} ° The format in which the data appears forinput, o
for output, This is ment which muasat

T is to be written
8pecified by a FORMAT state
.) be referenced by the input or cutput statement in all but a few
' "special cases (see Sect. 5, 4)

5.1 Input and Output Statements

Input and Output sta'tements take the form:
READ (u,f) k or READ (u) x
WRITE (u, f) X or WRITE (u)

where o Tepresents an integer constan

t or variable indiéating a device
(see table which follows). ' ‘

f rTepresents the statement num
Section 5.4), If 141 i absent,
unforrmatted;

ber of FORMAT statement (see
statements are known as
otherwise they are known as formatted.

The name
of an array may be useq in place of f (sce Section 5. 7).

.k represents a 1igt of items

to be input ox output. The list may
f contain variables,

subscripted variables, array names and

DO-~implied lists.

. The value of u mugt be in the range 1 to 10,

Page 49

- - . . _—u"-}
Value of Device rofmey, '
- u READ Stateinent
- 1 Paper Tape *
2 - -
- 3 Teleprinter = Teleprinte:
4 - ILineprintes
- 5 - - Digital Ploive:
) - -
- 7 . Card Reader -
- '8 - -
. e o
9 Display Keyboard ‘ Display Screoen
; 10 Special Devices Special Devic
‘ .
— The standard run-time package for paper tape systems has the device
' marked * pre-set (i.e. automatically available). Input or Guiput te any

h]

other number in the range 1 to 10 is diverted io the paper tape reader
— (usmg READ Statement} or punch {using WRITx Statement). If any cther
numbers are to be used, the device routines shounld be set hefore obeving
: the READ or WRITE statemient e.g. 2 call of QLPOUT sete device :

- 4for output of information to the line printer. De
and ocutput is reserved for special on-line devic
the user} and will not be used for any standar

'OD

[N
re
fu
L
E‘L‘
=t

5,2 The List of an Input or Output Statement.

The simplest type of list is one in which all the varial

o]
re transmmitted. The

: explicitly and in the order in which they are to
fundamental idea of 'scanning' carries through; the
associated with the first variable name and firsi field specification {(in

the assocciated FORMAT staternent), and so on.

However, when entire arrays or paris of arrays are to be iransmitied it
is not necessary to name each element explicitly. Whe.":, t?‘ri,n?rn'i‘::t‘ug an
cluding any

[
(¥
(‘;.

array, it is only necessary to name the array in a
subscripts. The name of the array mugt appeaar zlsew }wre in the program
in a specification statement that gives dimensioning information, but in

the list it need not carry any subscripting information. The elements may
(but need not) have the same field specification; this one ficld specification
may be given by itself in the FORMAT staternent.

For example:.
DIMENSION A(10, 5)
SWRITE (6, 21)A ’

21 FORMAT (1PEZ20. 8}

would cause output of 211 50 elements of array A, one to a.line (in IPE 20.8
forrnat).

When an entire array i moved this way, the elements are transmitted in
a seqguence in which the first subscript varies the most rapidly and the last
subscript the least rapidly.
/

When only some of the array elements are to be transferred or when the
‘natural order' just mentioned is not required, it is still possible to avoid
naming each element explicitly., The elements can be specified instead in
the list required in a way that parallels a DO loop.
Example: ' - . i

: !
Suppose the array 'BLOCK' has 90 lecations, in the form of 15 rows and
6 columns, of which only 24 of these are required for ouiput. These
locations are located between rows 7 and 14 and columns 2 and 4. The
WRITE statemnent could be in the form:

*“ DO50I=17,14

DO 50J=2,4
50 WRITE (3, 51) BLOCK{L,J)
51 FORMAT(3I6) -

With DO-implied lists this could be written:
WRITE (3,51) ((BLOCK (1,J), T =2,4), 1=17,14)
51 FORMAT (316) -

""" = In general,a list of a READ or WRITE statement can be made up of variables,
- subscripted variables, array names and DO implied lists. If there is
more than one item in the list they must be separated by commas.

A DO-implied list is made up in the general form:
(List, 1 =my, my, m3'}

where I represents any integer variable and Imy, Mm,, m3 have the same
meaning as ina DO statement {Chapter 3).
The 'List' may be made up of variables, subscript variables, array names
. and DO-implied lists; which means that DO-implied lists can be nested",
as shown in the previous example. The Innermost DO-implied loop is
executed most frequently. '

Page 51

5.3 Effect of Nums=xic IZems in READ and WRITE Listp

Itemn) Bifect in a READ Effect in a WRITE
’ ' list 7 list
A simple var- A number is input The value of the variable
izble (which from: the specified in output 6 the specified
does not occur device and its device
in a valiue is assigned
DIMENSION to the variable
statementje. g.
A subscripted As for a simple Az for a simple variable
variable varizble {Sce {see Note 1}
e.g. B{7,7) Note 1) ' '
The name of 2 ‘The appropriate The value of the elements
DIMENSIONED | number of values is of B are output in order,
variable read irom the speci- ‘ .
’ fied device and they
are assigned, in)
order, to the elements
of B

NOTIE: The identity of the items in a READ or WRITE statement is

determined before the values of any item in that list are input
or output Consaquently if the next two items on a data tape are
3 and 3. 159, the effect of
I=7

READ(1, 1M, A(E)

is to assign the value 3 to I and the value 3.14159 to A(7) (the
value of A3} will remain unaffected).

L4

8.4 FORMAT Siaterment

The functicn of a FORMAT statement is to declare how information is to

be arranged either on input or cutput. To each value transmitted there rhust
correspond a field specification which lists the kind of information and the
layout details of the value contained in that ficld (in terms of its internal
representation and what it 'looks like' externally).

5.4,1 Gencz-al Foxm of .'E‘;OR'I»‘EA ’r: fements

ueed for a FORMAT statement is the word FORMAT,
one or more items enclosed in parenthesis, that is @

The form genera
followed By a list:

FORMAT(List)

. . . S : Page 52

in 05 FORTRAN, 'List' may consist f the single word FREE which
indicates free format for use on input only. However, standard FORTRAN
does not include this facility since FORTRAN was mainly used in a card
input environment, When data is inpub from cards, each item is normally
punched in a fixed column width with a fixed mumber of items per card.
Using paper tapeinputitmaybe inconvenient if the value 2.0 has to be filled
out with 10 spaces because the number 123456785 -5 has tobe punched ina
corresponding data field. For similar reasons, it may be inconvenient to
always have z fixed number of items per line of text. Therefore 905
FORTRAN allows both fixed (standard) and free format input.

LExample:

READ(1,7) L3, X, Z

L1 53
7 FORMAT{FREE)

will cause the noxt four numbers to be read from a data tape, and assigned
to 1,3,X, 2 with the correct value type (see Section 5.8 for further details
of free forrat input). Oxn output, it is both convenient and essential to

A

L,

specify how many character positions are occupied by each item ocutput
and the form of output e.g. floating point or fractional , number of signifi-
cant digits etc.. '

Standard FORMAT statements thus consist of a set of field descriptors

which specify the width of a field {i.e. the number of character positions
on the external mediumj, the corresponding type of internal representation
and other necessary information for output control. When a READ or
WRITE corresnonding to a FORMAT staterment is obeyed, each

itern present {(or implied) in the READ/WRITE list is matched against a

ficld descriptor in the FORMAT list by a scanning process which works
through both lists in parallel.

i) avoid repeatedly writing identical field specifiers
{ii) cater for READ/WRITE lists whenthey are longer than the
FORMAT staternent lists.

{

/
¥ach field descripior impliesaconver gsion between a number or a grosﬁp of
charucters renresented on an external medium, and an internal reprdsent-
ation of the sarne item within the computer. The internal representajiion
may consist of binary numbers, packed internal cede characters, floating
peint ete.. For most purposes, the programmer only needs to e aware of
the type of internal representation available i.e. integer, real, Hollerith
ete.. The external meadium rnay be paper tape, teleprinter or any other
character handling device with suitable software. /
reral FORMAT list is made up of field descriptors separated By
ficld separators (either commas oOr slashes). Field descriptors
consist of ons of the letters I, ', E, G,D,A,H, X, L followed by either
ber or characters conveying special information. For exzample, using

T
tHe T descrirtsr to control integex conversion. |)

Page 53

WRITE{L, 99)L, 7
99 FORMAT{I2, 14)

would cause the two integer values in fand Jic
and four characters respectively.

5.4.2. - Repeat Counts

All the descriptors except X and H may ba preceded by a vepeat count ()
indicating that the descripfor is treated as though it were writien ¥ Limes.

Example:
| FORMAT{315)
is equivalent to: FORMAT (15, 15,15).

A group of field descriptors may he enclosed in parenthesss o maxe 3
basic group {The basic group may be preceded by a repeal count)., Iield
separators and basic groups may be further grouped by enclosing in
parentheses with a repeat count. The '"nest’ of groups must not ba more

than two in deptn.

Example:

FORMAT (2(16, 3(14,13))) _ _ I o
is equivalent te: ' ‘ | : : . :

FORMAT(I6, 14, 13, 14, 13, 14, 13,16, 14, I3, 14,13, 14, 13)

If the READ/WRITE list contained more than 14 integers, these statements
would not have exactly the same cffect (see section 5.4. 3.

5.4.3 FExterpal Records and Newlines
Apart from separating text, the separatox / (slash) is 2lso used to starta
new record (for punched card input a record is defined as one card;
general, a record on paper tape i a string of characters (text) {cilowed
by newline, although the FORTRAN standard does not clearly de

In §05 FORTRAN, the separator [ina FORMAT staternment cauges on

and on input causes gharacters up
aracter to be skipped. The end

efine this.

output a newline sequence to be nunched,
to and including the next newline (linefeed) ch
of a FORMAT statement scan, when the last right parenthesis is I

produces the same effect.

There may be more than one slash between field descriptors indicating
multiple newlines, and a group of slashes may be usecd at the beginning or
end of a FORMAT statement.

Example: .
WRITE(3, OT)L.T | |
97 FORMAT(//13/14 /) ' o <

This would cause c}utput-of two newline sequences, a three character integer,
newline and a four character integer followed by two newlines. OF the last
two newlines one is causes by / separator, and the other by the end of the
FORMAT scan.

- Ifinthe palj,z‘él'lgl scanofa FORMATstatement and READ/WRITE lisi, the
former list is exhausted before the latter; formaf conirol retarns to the
‘beginning of the FORMAT list, or ifthere are nested groups of descriptors,

- to the repeat count at the start of the grovp which ended most recenily. In
either case a skip to a new record or cutput of new line cceurs,

Example:
WRITE(L, 999)M, ((IA(F, K, T = 1, 2), K= 1, 3)
999 FORMAT(I6, 2([13,14))
causes cutput of the vaiues- as follows:
IA(1, 1} 1A (2, 1)
— 1a(1,2) 1a(2, 2)

vxtra newline for
end of format.
------ IA(1, 3) 1A(2, 3)

5.4:4 Field Descriptors Available

There are nine field descriptors available in 905 FORTRAN, which are
written in the following symbolic forms: ' N

rEw.d

0

er\;v.d

erw.dr
rD w.d

[}

Iw

L

I
¥ Lw

r Aw

nH hy, h2,hz,...... by

n X

where:

s represents a scale factor in the form K P which can be ornitied is ot
required (k is an integer constant, optiorally signed).

T represents a repeat count which may be omitted if not requirsd. It is

written as a positive unsigned integer constant.

o

W represents the width of the fi=ld on the external mediom in characis
it is written 2s an unsigned positive integer constant.

‘i represents the nurnber of dizits after the decimal point in & real or

. double precision numbery., ‘d' is an unsigned positive integer.
1 repyezents the number of cl.aracters in a f{ield.
The effect of the various number descriptors {I, F, E, D, G) on input is
described in section 5.4, 6. The effects of ouiput are described under
:
s ¢

where j is an unsgigned positive integer constant. or a signed negative integer
’ 3

€ a s has been specified, this factor will apply to
and D field specifications which follow(in the rest of the FORMAT
essing}, unless cancelled by another scale facter. An implied
S a READ or WRITE Statement commaeances.

Cr EH
‘A scale faclor has no effecton I, L, A, H or X specifications.

A pon zero scale facter has different effects on input and output, On input,
for F, £, G and D specifications if there is an exponent in the input field,

3

‘the scale factor is ignored. If the external input {jeld does not contain an

exponent, the internal number = external number divided by 109, where n is
the scale factor. : ‘

For the efiect of scale factor on output, see the separate descriptions of

F, E, G and D specifications.

5.4.6 Input-of-Numbers Under Format Conirol,

Nurnbers are inpat under format control (as opposed to free format} by the
descriptors I, E, F, G, D. In each case a field of w characters is input,
that is the next w significant characters are read from the external source.

il

Line feed {newling), carrizge return, null and erase are all ignored by the

compiler.

For integer conversion I the external field must'be in one of the forms
permitted for integer constants {signed or unsigned).

For real and double precision conversions (E, F, G and D), the external
field may be signed or unsigned, with a string of digits which may or may
not contain a decimal point. These digits may, but need not, be followed
by an exponent in one of the following forms: '

- Example of complete number,

+ integer constant . 050?-5-3

~ integer constant 7 0.000-1

. inteper congtant) i 0. 009%E2 .
E signed integer constant - 90. 0E-2 o ‘

) 9 FORMAT (i6)

between an internal real value and an exzernal number writien w

D integer constant ' . GG9IDG2
D signed integer constant bb90D ~2
(No exponent) . ' 0. 9bbbb

In the examples b represents space (blank). All these numbers could be
input under control of ¥7.0 to give the same internal value.

If a decimal point occurs in the field the d value is ignored. If an exponent
is used the number is raised to that power of ten, and any scale factor
ignored. If there is no exponent, the internal number = external number
divided by 100, where n is tha current scale factor {zero if none specified),

‘Spaces (blanks)are significant in formatted input, they are treated as

zeros, If spaces occur at the beginning of the field they are generally
regarded as non~significant zeros, but at the end of the field they may
have some effect, particularly if there is no decimal peint or if there ig an
exponent.

An all blank field represents zero,
5.4.7 Fisld Specification I {Integez)
This takes the form Iw where I spacifies convers bet{veen an internal

integer and an external decimal intéger, 'w' ‘mfc'i' s the total number of
characters in the field, including any sign or blanks '

3
ot

Examples:

READ (1,9) J

On input this would cause 5 characters to be read from papar tape, con-
verted to integer form and stored in variable J. :

(ii) J = -987 : o SN :
WRITE (3, 9)}J o R R A
| 7 PR j
On output this would cauze the number -987 to be cutput on the t’ 2lew

printer, with two spaces, a minus sign and digits 987 (a total of six
characters). ' :

5.4.8% Flield Specification ¥ {externzl {ixzd poing) !
The form of this specification iz ¥Fw.d,where F indicates conversis

exponent. The letter w specifies the total nunber of characiers
field, including sign, decimazl point and any blanks; 3
of decirnal places afier the decirmzal point,

[
¥
o]
¢}
]
[
=
-
o
w

For the effect of ¥ format on
d digits to the rigirt of the de
zeros}.. - -

The scale factor may be used with the ¥ field specification by writing the
specification in the form:

sPrFw.d
where s= scale factor {scale factor may either be positive or negative}

r= repetition number

The effect of scale factor on output is that: external number = internal
P :
g

'5,4.9 Field Specification E (Floating Point)

The form of this specification is Ew.d where E specifies conversion
between an internzl real value and an external number written with an
exponent. The total rumber of characters in the external medium is w,
including sign, decimal point, exponent and any blanks. The number pf
decimal places after the decimal point (not counting the exponent) is |
specified by 4. T

Example:
Y = 1.5B.2)
X = w123.4567 i

WRITE(3,9) X, Y S R T
9 FORMAT(2E13.6) o N
This would cause oviput as follows:
0. 1234578 +0360. 150000501 (where b represents ¢ a space or blank)

If a scale factor is used on output, it causes the fractional part to be
multiplied by 10% and the exponent to be reduced by s. For example, if
the previous FORMAT statement were:

9 FORMAT (1P2E13.6)

the output would be

-1.234567E402_1.500000E-~02

In 905 FORTRAN the standard form without scale factor, for example:
< 100005+03
will sometimes be output as:

1. 00000E4+02

5.4.10 The Field Specification G{Freepoint}

The form of specification is G w.d. The internal value must be of type

real. On input, the G w.d specification is ireated as for F w.d specification.
- On output, a field of width w words with & significantcharacters is output,

according to the following ruless) . !)

Page 58

If N is the magnitude of the value to be output, the sPG w.d specification
produces an equivalent cénversion as follows:

Magnitude ' Eqguivalent cutput conversion

0. 1LNL 1 , F{w-4).d,4X
C1EnN< 10 _ Flw=4), (d-1), 4%
1pd=2gnLipd-1 - Flwed). 1,4X
10d-1g n< 10d Flw-4). 0,4X
Other values sP Ew.d. . '

The scale factor has no effect unless cutpﬁt is in the. Ew.d form.

Example with G10.4

~123.45 cutput as -123.4bbbb
-12. 345 output as ~12.34bbbb
-1.2345 output as =1.234bbbb

where b represents space (blark) character.

§.4.11 TField Specification D (double precision}

In the Dw.d specification, the corresponding internal value must be

double precision. The exponent in the cutput field is written with D instead
of E, but in all other respects this is analogous to the I field specification.

5.4,12 Field Specification L{logical)-

In the Lw form, the L. specifies convers‘ion between an internal logical
value {. TRUE. or .FALSE.) and one of the letters T or F externally. The

_total number of character positions is specified by w.

On input, the exterpal field may contain spaces (which are optionall, _
the letter T or F, followed by any other characters which would fill up the

remaining w positions. On output, the external field consists of (w=1)
spaces (blanks) followed by a letter T or F.

5.4.13 Conversion for Complex Numbers.
A complex number is inpui or output as though it were two real numbers, -

the 'real part! followed by the 'imaginary part’. Therefore there must
be two real format conversions (F, E or G} in the FORMAT statemeoent,

corresponding to each corplex variable or array element in the RIEAD/WRITE
list, Only in {ree format input (q.v) are complex numbers specially treated.

5.4.14 Field Qpeclfncatiorz A f.[w*‘% anumeric)

In the Aw form of field specification, the associated variable may be of
. any kind. The field specification causes w characters to be read intéo.or .
- written from, the associated 'list' element. The aiphanumeric c‘iarac»evs
may be any symbols representable in the internal code character set,
including letters ;digits and the character space (blank)

In 905 FORTRAN io every basic ‘A’ éesc*iptm there must correspond one-
word in the input/output list. 'Aw’ descriptor will only transier - _
ene word (one storage unit) and at the most three characters. If, on input,

w3 then the first w-3 characters are ignored and the rema ining 3.
characters transferred into storage. If w<3 then the rightmost (w-3)
characters appear ds blanks in storage. On ouiput if w>3 the first
w-—3 haracter will be biank in the cutput fleld

_ Example](I J, K = integers)

" _.'-REA}:} (1, 10)1, 7, K

_ WRI‘I‘L (Z,A 10)1, J, K

10 FORMAT (A2, A3, A5)

R e S A WOUN P
..'Stc;rage ' SR NIZu D A f';\l‘/

I+ A-b .- ' wm\z?i,q@{ o R e die
J : FOR T Qw%ﬁ W%‘Cﬁg

K : T#x

Cutput : A - FORbLT*x%
where b represents space (blank) "
' : : : 5%3"\?’@&2@:/{ .,.Q«ngf At g’f e

Example 2 (F=real, E=real array)

DIMENSION E(20) ~

| READ (1, 20) F, (E(1), i=1, 2)

20 FORMAT (2A2, 4A3) _
Input : TESTING b FORMAT, =
SRR T LR NS IO

2 2 3 3 3 3

where b represents space {blank)

St_ﬁxage

¥ ¢ TED

F+1 : STb
: ING:

:. bFO

S ~ Pagz 60

carriage ety

NOTE:

Example 2 (Contintuedﬁ ' .
E(2) : RMA
E(Z2}+1 T, =

Example 3 (N=packed integer array)

k!

DIMENSION N{20)

READ {1,30) (r(1), 1=1,2)
WRITE (2,30) (M(D), 1=1,2)

30 FORMAT (2A3)

‘Exarnple 4 (M=unpacked integer array)

DIMENSION M{z0)
_READ (1, 40) (D), 1=1,2)
WRITE (2, 40) | (2(1), 1=1,2)]
40 FORMAT (443)
5.4.15 Field Specification ¥ (Skip)

This specification takes the form wX, where w is the fiecld width. On output,
w spaces {blanksjare inserted in the output text. On input, w characters are
read and ignored (sb null, carriage return and erase are ignored on
counting w). The 2 :s not associated with an item in the READ/
WRITE list, but is a 5 the action specified by the previous
FORMAT descrintor. _ ®

N,B, The letter X must bg {oilowed by a comma, slash or right parenthesis,
5.4.16 Field Spzcifisation H {Iisllerith)

This specification takes the form wi, where w characters immediately

following the 1ett€-‘r' i : or punched ir the position indicated by

the position of the acification in the FOCRMAT statement.
The Hollerith Fiel ffers from the other specifications

t call {or the transmission of any values from the
or the input or output of the text itself.

w characters are read from the
FORMAT data replacing the w characters
ing w characters; newline, null,

_ if the letter H is subsequently used
for output, th strving of chavacters is butput.

Ifan 'E°f
8:{'{8?‘11&.{ mad
*.—'hic:h fo

e H text, it er in the original
letter H.

Page 6%

8
9

Example:

WRITE{3, 8)

READ (1, 9)

WRiTE (3, 9)

FO%MAT’ (63, THHEADING)
FQ!RMAT (20H01234567890123456789)

This reads heading of twenty characters from the input paper tape, and

outputs;it on the teleprinter. Such input and cutput may provide a more

- maching independant forrn than the use of the 'A' descriptor for similar
purposes. The last character of the Hollerith siring must be followed
" by comma, slash or right parenthesis. ' ' '

5.

7 2)

b)

5

Examples of Field Spécificationa ’ . ' : .

Integer type

To output the numbers 16 and -64

i) on the same line, the FORMAT statement could be
FORMAT (12, 13)
which will be output as

16-64

ii) on the same line but separated by three spaces use

FORMAT (12, I6)
whizh will be cutput as
iij) on separate lines but under each other the FORMAT statement
FORMAT (13) :
which will output
G
-64

Externzal fixed point

To output the numbers -187. 654 (with two spaces before the minus
sign, the FORMAT statement would be

FORMAT (F10. 3)

FORMAT (F8.5) will give -187. 65400

FORMAT (3PF8.3) will causc a number 0.1234 giving the current
in amperes to be printed 2s mililamperes;

b123.400

‘Floating Point

To output the number 497863.31, the FORMAT statement used,

. could be FORMAT (E14. 8)

‘which would output;
0.49786331E4+06

d) Logical

If the variable is , TRUE, then the FORMAT statement:
FORMAT (L2) '
" would output:
Ok
However, if the variable is ;FALSE,' the FORMAT statement
FORMAT{L6) will output : :

clcloo ok

If 2 FORMAT statement contains nothing but Hollerith and blank field

specificaticns, there must be no variablesg listed in the associated input
or output statement. This is common practice when the WRITE statement
produces page and column headings or causes line and page spacing.

Example:
The two statements:
WRITE (3,7)
7 FORMAT(SHYARDS, 8X,4HFEET, 8X, 6HINCHES)

will cutput:

5 /“\. 5 (,“\ s Wk Vg oy ™ S
Ao DEOOOEEEr = QOTEEEO MCHE:
5.6 Number Out of Range on _Oﬁtput ' ' '

If the character field {w) is not wide enough to contain the output value

an asterisk is inserted in the high order position of the field. if the
exponent is also printed, its absolute value must be less than 99, otherwise
%! replaces the exponent part in the cutput. ;

Examples:

Format Value "~ Qutput

- Fb6.2 3456.7 %56, 70
F6:2 234.56 | 234.56
F6.2 ~234.56 £34. 56 |
F6.0 123.0 " bbizi. f
Fb.6 123 %23000
¥6.7 1.834 34000]
F6.4 0,123 0.1230
¥6.5 : | 0.123 .12300 f
D10.3 312.4E+100 0.124D+%% |

where b represents space {blank)

-
3

(%
S
L

s

With E-format, the standard form which 13

F 0%y, x, B +Fyive

occasionally becomes +1.00... CE 3+ Yi1ve when x; = 1, and x5 v Xy =0

since the number is rounded afier its formai has been determined,
<

5.7 Run-time FORMAT Statement Input

The ability to read 2 FORMAT staternent at tha time of execution of the

object program adds great flexibility to FORTRAN. In order to achieve

this, an array must be declared which will hold the FORMAYT specification

in the form of alphanumeric data {see Field Specification A). The FORMATS

-are read into this array at run titme. These variable FPORMATS must

reference the array by name in the READ or WRITE staternent,

Example:

Suppose we have three variables fo output but do not at the time of writing
the program know the form of output. A one-dimensional array FMT which
is of a suitable size,in this case 5 words is deciared. The array is real,
and has 10 locations in which a maximum of 30 alphanumeric characters
may be stored. The format which is to be in the forrn: . ‘

(16, 83, ¥8.3, IPE20. 8)bbbbbbb

which consists of 23 characters plus-seven spaces which make up the

30 alphanumeric characters. The program would be written as;:
REAL X, Y, FMT '
INTEGER I
. DIMENSION FMT(5)
READ(1, 269){FMT(J), 1=1, 5)
209 FORMAT(1CA3)

+
.
. L]

WRITE(3, FMT)L X, Y

NOTE:. It should be pointed out that in the data input frorm tape, the
enclesing parenthesis of the FORMAT must be included, but the
- word FORMAT itself should be omitted from the data tape. '

5.8 Free Format Input
The FORMAT statement for a free~format input operation is as follows:

FORMAT (FREE]

The effect of 2 READ statement which refers Lo such a FORMAT is to -
cause numbers to be read from the input paper tape, converted according

P

to their appearance, and the resulting values assigned to successive items

Page 64

-

e ——

in the READ list (the latter being interpreted according to the standard rules
for fixed-format}). The operaticn is terminated when the end of the list is
reached, and is temporarily halted by the appearance of a halt code on the
input tape,

When reading free-format data, the mode of conversion is determined in the

firstplace by the formation of the number on the input tape The value is

then stored in the form appropriate to the type (integer, real, etc.) of the
itern in the READ list,

5.8.1 Data Tapes for Free Format Input

Integer, real, double~precision, and complex numbers may be punched on
data tapes. They appear in the same form as constants of equivalent iype

in a source program, 2and each nurnber is terminated by cne or more

spaces or line feeds. The real part of a complex number is terminated by
",' complex part by')!. Blank tape, carriage return, and erase are ignored;
a halt code stops the program pending manual restart.

Acceptable characters are: digits, decimal point, +, -, D, E, comma,
parenthesis, subscript 10, space, tab, line feed, carriage return,

blank tape, erase, halt code. The appearance of any other character .
on the input tape will give rise to an error indication. .

In a complex number, there must not be any spaces between the end of
each number and the commmaz or parentheses.
3.8.2 Example of Free }?crmat‘lnput- ,
The statements:
COMPLEX C
READ {1,100}F1,¥2,731,32,33,C
100, FORMAT (FREE) '

with input data tape:

10.3 - 10 . 7.6 2 5.3%1 {2.4.5)
will result in the following assignments:
Fl = 10.3
e = : 10;0
J1 o= 7)
Jj2 = 2 IR
Jj3 = 53
cC = - 2.4
C+2 = 5.0

L]
1
1)
o
o9
o
o
&)

5 & 66

CHAPTER 6: FUNCTICNS AND S5UBROUTINES

6.1 Subprograms ~ General

Functions and subroutines form a means whereby a single FORTRAN

statement may cause the computer tc obey a section of program which

may contain rmany statements. They may be used to oblain one or more
of the following advantages: :

(a} To save the programmer writing the same long statement or
group of statements many times at different points in his
program.

(b) To save core store, by avoiding the repetition of code performing

the same or similar functions. :
' !
{c) To divide the program into units which may be compiled
separately. This has the advantage that if an alteration is
necessary in one unit, it is only necessary to re-compile

that one unit.

() A second advantage of separate compilation is for convenience,
ecpecially when several programmers are sharing a task. They
need not worry about clashes due to use of the same identifier for
different purposes. The parameters and/or Common Blocks help.
to provide a defined interface. : '

{e) Once written a2 single subprogram may be used with different

Main Programs. ;

6.2 Main Programs, Subprograms and Program Units

A complete program in the 905 FORTRAN system, with all the statements
necessary to run it, is known as an executable program. It may consist
of one or more program units.)

Each program unit is cither a Main program or a subprogram written in
either FORTRAN or 905 MASIR assembly code. There must only be one
Main program which should be written in FORTRAN (but could ke written
in MASIR code). A FORTRAN mein program is identified by the absence
of either a FUNCTION or SUBROUTINE staterneantf at the beginning of the
programj {when compiled the program unit takes on the name MAIN.) .

A FORTRAN subprogram is either a FUNCTION subprogram or a
SUBROUTINE subprogram, identified by the appropriate statement as the
first significant line of text. ‘

NOTEL: A subroutine is sometimes referred to as a procedure.

No program unit in 905 FORTRAN may be so large that its compiled code
plus the local arrays and variables (i.e. not in COMMON) exceeds

| Page 67

L Tee

8100 words of computer storage.

6.3 Types of ?rc@jcad;z_re

.

In 905 FORTRAN, the following types of procedure can be usad:

(a) Statement Functions.
(b) Intrinsic Functions.
(c) Basic External Functions.
(d) FUNCTION Subpfogra;ns.
%— - {e} | SﬁBROUTI‘NE Subprogx.'ams.

Statement functions are single statements embedded within a program unit,
and are not therefore classed as subprogrames (they are described in
detail later in this section},

= Intrinsic functions are a set of functions provided with the 905 FORTRAN
Compiler system, and listed in Appendix 1 Table A 1.2. Their names ‘

, should not be used for any other purpose. They perform commonly

- required operations such as finding the absolute magnitude of a number.

; Basic External Functions are a2 set of functions also supplied with the

- Compiler system. They perform useful Mathernaticzal functions such as
taking the square root, finding the sine etc. A number of other
trignometric functions can be easily derived from the functions supplied,

for example:

arcsin (%) = arctan (sgrt (le(lwx“)))

The differences between instrinsic and external functions are that, external
functions may be mentioned in EXTERNAL statements and one ’
may write external funciions to replace the standavd functions {if
considered necessarv). For example, the programmer may write a SQRT
routine which took special action when a negative argument was given.

6.4 Subprogram Head -

" A subprogram head is declared in the form:
FUNCTION f(ml, mk)
SUBROUTINE s(mj,Mp.«.von... my,)

or SUBROUTINE s
where:

f is the name of the FUNCTION and specifies its type in accordance
with the implicit type rules (see (vi}).

Page 68

s is the name of SUBROUTINE (apart from the (3 Rule - see

2. 6.3 - a subroutine name is not governed by set rules but, care
must be taken toc avoid clashes of names; therefore the choice of
s is completely arbitrary). ' ‘
Iy, Mg, Mgy - vv e o.M ATe eXpress formel parameters.

Each m; must be the name of a variable or an array, or a
procedure. There must be at least one parameter per FUNCTION
staterent but there need not be any explicit parameters for a
SUBROUTINE. ' -

Each n; which represents an array must appear in a DIMENSION
statement within the body of the subprogramn. In this DIMENSION
statement the upper bounds of its suffices may be given either as
integer constants or as Integer variables which are themselves
express formal parameters. - '

In addition to the express formal parameters, a subprogram may
refer to variables in COMMON, these may be regarded as
implicit parameters.

The word FUNCTION nﬁay be preceded by cne of the following:

REAL,INTEGER,DOUBLE PRECISION, LOGICAL or COMPLEX,
which causes the appropriate type to be associated with the
FUNCTION name.

6.5 The Subprogram Body

A subprogram body is subject to special rules asina normal FORTRAN

main program. They are:

1)

(ii)

(1ii)

A subroutine does not have a value and no assignment may be made
to its name. It may communicate information o the pregram that
called it {main program or another subprogram) by altering the

“values of one or more of its parameters.

Within a FUNCTION subprogram, its name (f) acts as an ordinary

variable of the appropriate type. Ifis undefined on entry to the

FUNCTION but a value must be assigned to it, before exit is made
from the FUNCTION subprogram. ‘

In 905 FORTRAN, the alteration by a FUNCTION of any of iis
parameters is not considered to be an error. However, this
should be avoided wherever possible, particularly as the evaluation
of 2 FUNCTION statement may not validly altex the value of any
other elements within any expression, assignment statement or
CALL statement in which the FUNCTION appeaxs. :

A subprograrm body may not itself contain a declaraticn of a
subprogram. :

(v} _ An explicit formal parameter may not occur ina COMMON or
TQUI.VALL\}*CE} statement (see CHAPTER 4). ' '

{vi} When 2 subprogram has completed its computatmn it returns
cénurol to the prograra that called it by means of & RETURN
sta.tement This comprises of the word RETURN on a new line.

(vii} The body of a subprogram 1s ter minated by an END statement.
ThlS comprises of the word END on a new line.

6.6 [}E}xamples of Tunction and Subroutine Subprograms

| FUNCTION MAX@LU o .

HF(IJ\A 1, : S '

- 1 MAX =

RETURl’

. MAX =1

- - RETURN

- SUBROUTINE MTXMLT (&, N, M, B, L, C)
DIMENSION A(N, M), B(M, L), C(N, L)
C BECONMES A TIMES B
DO1I=1,N
DOl K=1,L
D=0.0 _
po2Jj=1,M
; D= D+A (1,7) % B(J, K)
! 1 C(I,K)=D

'~ RETURN

END

¢

6.7 Calling a Subprogram

(1) A FUNCTION subprogram is activated by writing:

jn some statement which can make use of the value of f.

(2) A SUBROUTINE subprogram is activated by a call giatement,
which takes the form:

CALL s(my, Mo, cennnnns my)

] The FORTRAN word CALL must be terminzted by at least one

space.

(3) If an express formal parameter (integer variable) is used as a
subscript bound then the corrvesponding actual parameter must be
an integer variable to which the correct value of the subscript

"bound has been assigned poior to the call of the procedure.

(4) If an express formal parameter is an array the corresponding
actual parameter should be an array of the same type.

. (5) If an express formal parameter is a simple variable, the
corresponding actual parameter must be a simple variable, arvay
element, consgtant or expression of the same type. If an actual
parametér is & constant or expressmn then the coz‘reﬁpondu}g

- formal parameter:

(i) must not occur in & DIMENSION statement

(ii) must not have a value assigned to it during
the execution of the subprogram.

(6) The actual parameters need not all be distinct.

- 6.8 Examplas of Calling Subprograms
This example is based on the example of subprograms in Section 6.6.

DIMENSION K50, A(5,10), B(10, 20), C(5, 20)
C = THE ELLIPSIS INDICATES THE ASSIGNMENT OF
C VALUES TO THE ELEMENTS OF K, A AND B
I=MAX (K(1}, K(2)) .
DO 1 J~3,50
I=MAX (I, K{(I))
‘) 11 =5 o
, 12 = 10" T
13 =20 ’ ‘
CALL MTXMLT (A, I, 12 B,13, c)
END

{H} _ o

6.9 Statement Functions

It often happens that a programmer will {ind some relatively simple
computation recurring through his program, making it desirable to be
able to set up a function to carry out the computation. This function would
be needed in only the one program, so that there would be no point in
setting up a new supplied function for the purpose ~ which involves further
work. Instead, a function can be defined for the purpose of the one

program and then used whenever desired in that p:Ogram. It has no effect

on any other program.

A statement function is defined by wrlhnd a single statemcnt of the form

a = b, where a is the name of the funcfion and b is an expression. The
name, which is invented by the programmer, is formed according to the
same rules that apply to a variable name: one to six letters or digits, the
first of which must be a letter. If the name of the statement funciion is
mentioned in a prior type statement, there is no restriction on the initial
letter; if the name is not mentioned in a type statement, the initial letter
dzstlngals*;es between real and integer in the usual way. The name must
not be the;saxne as that of any supplied function.

The nazne of the function is followed by parﬂnthesc,s cncloswng the argu-
ment(s}, ; Kwhich must be separated by commas (if there is more than one}
The argqments in the definition must not be subscripied.

-The right-hand side of the definition statement ray be any expression not

involving subscripted variables. It may use variables not specified as
arguments and it may use other functicns (exceptitself}. All function
definitions must appear before the first executable staterment of the
program. If the right-hand side of a statement function uses another
statement function, the function definition of the latter must have appearcd

earlier in the program.

"As an illustration, suppose that in a certain program it is frequently

necessary to compute one root of the quadratic equation, ax™ + bx + ¢ = §,
given values of a,b and ¢. A function can be defined to carry out this
compuiation, by writing :

ROOT (A,B,C) = (B + %‘QRT(B w2 4 '~A-C))/(2 <A

The compiler will produce a sequence of instructions in the object program
to compute the value of the f\.mctxon given three values to use in the
computation.

This is only the definition of the function; it does not cause computation
to take place. The variable names used as arguments are only dummies;
they may be the same as variable names appearing elsewhere in the
program. The argument names are unimportant, except as they may
distinguish between integer and real.

A statement function is used by writing its name wherever the functicn

_value is desired and substituting appropriate expressions for the

argum=ents. '"Appropriate!" here means, that if a variable in
the definition is real, the expression substituted for that variable must
also be real, and similarly for the other types of variables. The values

‘of these expressions will be substituted into the program segment

established by the definition and the value of the function cos'nDuLed The

- actual arguments may be subscripted if desired.

Examples of the use of the statement function terms defined are:

Z = ROOT (2.0,8.0,3.0) + Y

Z

which finds a2 root of 2.0 x“ + 8 x + 3 and adds value Y

"Page 72

Z'= ROOT (E,DM ¢ 5.0,DM) * BETA -~ ATAN (G

which finds the root of (Ex2 #(DM+5) x + DM) and multiples it by BETA,
before subtracting ATAN C. - :

Variables in the right-hand side of the statement function definition need

not all be dummy arguments. If a variable name is not a dummy argument,

it has the same meaning &s that name anywhere clse in the program unit.

Page 73 & T4

B e BT

rree
i

[t

CHAPTER T: USE OF MASIR/SIR CODING WITHIN FORTR1 N TEXT

7.1 . Code Se;tioms

- There are certain operations which are faster and more economical when
written directly in MASIR than when written in FORTRAN and translated
into machine code.

The examples used in this chapter illustrate the method of wmtmg SIR
coding as part of a FORTRAN program.

Tt is assumead that the reader of this chapter is familiar with the programm-

ing language MASIR. B ' _ S S
) ') - {
7.1.2 Format)
A code section may cither be a con nplete subprogram or may be a part of
a program unit, the remainder of which is written in FORTRAN source text. ;

In the latter case, the machine code instructions are preceded by the 7 i
directive CODE written as a FORTRAN statement on 2 line by itself and '

terminated by the directive FORTRAN written on a new line.

l

7.1.3 Forin of Machine Code Instructions Within a FORTRAN Unit

- Machine code instructions are written in a {form similar to 900 series SIR
coding. These instructicns are written one per line. Labels should always
be written o the lefi hand edge of the coding sheet i.e. to the left of the

vertical line if vusing a 'free- io*‘mat’ coding sheet. The instructions

telied should be separated by two spaces from the label, or alterna:.wely

-k

C
he label mzv be on a line of irs own.

The {ancticn and operand are written to the right of the vertical line on a
sheet. The function consists of an unsigned one or
range 0 to 15, preceded by a / if the instruction is
crand (address part} follows the function on the same

ezthér at the beginning of a :

L comment it intreducen by i

Fy
. H .
1 3] icates that the remainder of the
""" urrent linz of fexi is io be igr P by the cornpller. t should be néted
ri)hi parentheses te terminate the
né over more than one line.
T.l1.4 Labeiling Instructions
. Machine code instruciions may be lebelled. but only with identifiers of the
form Qn, \:’nere n represgente 2 pumbs=r consisting of one to five digits.

,,,,,) Exarnples: . e L EE o : p !

Q1 G209 GeTees . o g

Page 75 -

The numeric part n is treated by the compiler in the samne way as FORTRAN
ternent labels. It should be noted that these numbers should not be duplicated

with any other label in the prograrm unit. The number n may be used ina

S GOTO statement within the program unit and similarly any Fortran state-

mment number m within the unit may appear in a machine code jump (branch)

instruction &s an identifier preceded by the letter 3 i.e. Qm. In either

case the rules of FORTRAN must be obeyed; for example a GOTO or machine

code jump must not cause control to be transferred into a DO loop from

outside its range (except for an extended range DO},

7.1.5 Operand
The cperand {or address pari) of a machine code instruction may take one

of the {ollowing forms:

{1} Gonstant, An integer (4 or -) or octal (&) literal constant may be
introduced. These are handled by the compiler as FORTRAN
constants and are allocated a position in local workspace.

(i1) Variable or Array Name. The address placed in the machine code
instruction depends on whether the identifier is & local variable,
array, item in COMMON or a formal parameter. For an item ina
localdata ares, writing the name as an operand causes the address
of the variable to be placed in the instruction. If the name has not
been previously encountered by the compiler in the current program
unit, it is classed as an integer or real variable according to
FORTRAN implicit type and the allocated space is local data
(implicit types follow the rules state in Chapter 2 - integer variables
must start with one of the letters I, J, K. L, M or N).

If the variable name quoted in the address part is a local array
name, the address placed in the instruction is that of the first
element i.e. (1), (1,1) or {1,1,1) of a one. two or three dimensional
array respectively. In either of these cases, the identifier may

be followed by a positive cffset +n for referencing multi-word items.
If the identificr is a variable or array in COMMON, or a formal
parameter of a subprogram, writing the name 25 an operand causes
the address of a local data location to be placed in the instruction.
This location holds the address of the variable or first array
element relative to the store module of the current program unit .’

(3ii) Absolute addresses. The machine code function may be followed

by an unsigned integer in the address part of the instruction,
indicating a core store address, input/output address or a number
of shifts. .

7.1.6 Example

The example which follows is a subroutine containing machine code ingtruc-

tions.

0 rese 76

[THIS SUBROUTINE SHOWS EXAMPLES OF MACHINE .CODE SECTIOND

SUBROUTINE SUB(IF)
DIMENSION IA(100)
COMMON K, J(160)

""" CODE |
PR (ADDRESS OF J)
5 IWS |
FORTRAN

DO 9 N=1, IP
IF (N-120) 1,2,2

1 CODE
o 1P |

""" 4 0 (VALUE OF IP)
0 K |

i iz o (NEGATE AND ADD VALUE OF K}
9 Q2)

0
/4 IA GET 1A [N#1])
0 IWS
/5 0 (STORE IN J)

. o | |
10 IWS
4 IA+20 (a [21])

B 1 -6 ' |
14 3 | - ;
6 &077770 ‘ o C
7 Q9 | ‘ j,f
5 M

FORTRAN . o o)

WRITE (3,8) M : |
8 FORMAT (15) | S o
9 CONTINUE

 RETURN

_~ ' EnD

Page 77

prosenss

7.1.7 Return to FORTRAN Text

After a group of SIR machine code instructions a return to the FORTRAN
source program will be necessary, this can be achieved by using the
directive FORTRAN written on a new line. '

7.1.8 Constraint on Symbolic Names

When machine code instructions are included in a program unit, possible
confusion is brought about when using variable names composed of the
Jetter Q followed by 1 to 5 digits. Such names cannot be referenced within
a machihe code section as they would be treated as label veferences and
so should be avoided in the FORTRAN text. '

7.2 Program uni’s in Machine Code

The facility for in-line machine code will cover the majority of requirements
not catered for by the FORTRAN language, withthe advantage thatthe standard
subroutine linking code is autornatically ingcrted by the computer. The loader,
however, also allows independently compiled MASIR blocks to be incorporated
into an object program. The following points summarise the rules for calling
MASIR program units from within FORTRAN texts. ' o
1} On entry to a block of SIR code, a correct module-relative link
has been planted in the first word of the bleck and a jump made to
'_the second word. At this time, the accumulator contains in bits
17-14 the module number of the call minus the module number of
the SIR block. Following the call are the addresses of any operands,
relative to the module of the call. A parameter address word con-
taining a direct address has bit 18=1; one level of indirection is
provided by setting bit 18=0.

2) The macro CALLG (name) should be used to call any further sub-

routines, and parameter addresses set up as previously defined,
In principle the Main program of an executable system can be in

MASIR, calling FORTRAN subprograms by CALLG.

3) It is not possible to access FORTRAN COMMON storage, except by
passing addresses of items in COMMON as parameters to the SIR
block. :

4) Return should be made to the location following the last parameter
of the call.

These rules are now expandedA in greater detail.

Within each store module {block of 8192 words) inte which a program s
loaded, the FORTRAN/MASIR loader places a set of instructions known

as module code; these provide a means of transferring between subroutines
in different modules. When the FORTRAN compiler generztes a call of a
SUBROUTINE or FUNCTION, it generates a special macro which is processed

Pagé 78,.‘.. o

by the Loader, The Macro Assembler MASIR generates the same macro
when the source code macro CALLG is used, CALLG is written in the
form: '

CALLG(SUB)

'where SUB is the name of the subroutine to be entered.

The loader macro, previously mentioned always generates three words of
code. If the subroutine in question is loaded into the same module as the
calling routine, the loader generates a dicect subroutine call, equivalent

to the assembly code sequence:

-4 40

11 SUB
8 SUB+I

If the subroutine is loaded into a different store module, the loader gener-
ates, for each call, 3 words equivalent to the assembly code sequence:)

4 +5UB

11 QMC (Call SUB via Module Code)
8 .QMC+11

where +SUB represents the address of a location holding the address of
SUB relative to the calling module.

The modulc code QMC has the form:

Word

. o QMC »>p- _
'I‘; i to | 10; .(Reserved for FORTRAN, etc. use)'_ ‘
ST 5 W (Store Relative Address) '
12; 0w)
| 13; 6 760000
14; 2 O»MC
15; A) - /5 0 (Store adjusted link)
16; 6 &760000
1T /8 1 {Jump to subroutine er;try)

This code is automatically duplicated in each module in which code is
stored.,

The called subroutine may be written in Agsembly code or FORTRAN. If
SUR is written in Assembly code it should have the usunl form: .

SUB > (Link)

(Entry point following link)

(Body of Subroutine)

0 SUB (Exit)
/8 1

If the call of the subroutine is from FORTRAN, 7 this example is
tquivalent to a SUBROUTINE with no explicit formal parameters.

If the Subroutine has two explicit formal parameters, e.g. SUB2 (I,7),
the 3 word calling macro will be followed by-two addresses referencing
the actual parameters. Bxit from the Assembly code subroutine would be
to the third location after the call (e.g. by /8 3 jump).

For each parameter address, if Bit 18 = 1 (i.e. the word is negative)
Bits 17 to | hold the direct address of the parameter, relative to the
calling module. If the word is positive, (Bit 18 = 0), then Bits 17 to)
contain an indirect address. This address points to a location of store
holding the actual address of the parameter, relative to the calling
module.

Example:

SUB2 starts at 7000t 0 (location 7000 of store zone 0), and is called {rom a

program in zone {Module) 1 say at 5001. There are two parameters to
.+ the call, the first direct, an array starting at location 800%1, the second
““indirect, an integer at 200072 (i.e. 18384). The loader has allocated

OMC to location 8000%] in store zone 1. The call might take the form:

- 4 600
11 8000
B 8 8011

/0 800 (pDirect address, relative to Zone 1)
0 700 (Indirect address)

where 6{‘30%1 will hold ~1192 (= 7000-8192) the relative address of SUB2.
- And 70071 will hold +10192 (= 8192+2000) the relative address of the

" second parameter.

In MASIR assembly code this fnay be written;
LCALILG(SURZ2)

- /0 ARRAY . o .
0 ADRB

- Page &80

where ADRB is a local data location holding the address of the second
parameter, If the second parameter is fixed one could write in ADRB:

ADRB +X

— _ where X is the (global} name of the actual parameter, but this could be
simplified further by omitting ADRB and writing: |

- CALLG(SUB2)

/6 ARRAY

0 +X

. When writing in Assembly. code any parameters referenced by direct address
must be in the same module as the call. Any non-loczl parameters which
are, or might be, in another module must be referenced indirectly. This
is because the +LARBLL facility of the assembler may generate a negative
or a positive address, depending on the relative position of the label.

Therefore, it is not permissible to use the form +LABEL on its own,

(i.e. not preceded by a function number} in the words following the CALLG.
0 +LABEL is permissible because its generates an indirect ("literal")
address, and the parameter word itself will always be positive. ‘

If written in Assembly Code, the subroutine SUBZ might take the form:

[susz] -
----- SUB2 > o e
5 ADJA (Address adjustment)
0 S5UB2 ‘
9 STPAl {Direct address)
1 ADJA P
5w o -
0 w -
N /4 0 ,
STPAL 6 &371777
) 1 ADJA
5 PAl (Store address of first parameter)
‘‘‘‘ 0 SUBZ
/4 2
B 9 STPA?
ADJA

Page 81

~ 0 W

/4 0
STPAZ 6; &377177
1 ADJA
5 W (Store address of second paraineter)
0 W ‘
ja o (Pick up value of second paramaeter)
(If the program is to be run on 905 or 920C only, the 5 w, 0 W

sequenues may be replaced by ATE).
Exit from the subroutine would normally be in the form:

0 5uRB:z i S

The reader may find it helpful to work through the giver sxamples, using
numeric examples of addresses, to confirm that the parameters will be -
accessed correctly, and that return will be madse correctly to the calling

program,

A FORTRAN function call will be compiled in the same way as a subroutine
call. H it is an integer function, the result wili be held in the machine
A-register on exit from the FUNCTION, If a real, double precision or
complex FUNCTION the result will be in the appropriate software pseudo-
accumulator of QFP. ‘

If the subroutine written in assembiy code will never be called directly

from FORTRAN, it is of course possible to siraplify the subroutine bady, fer
example by only aliowing direct address pararneters, or by a completely
different methcd of parameter passing. The use of the CALLG macro

does not dictate any particular method of parameter passing, it merely
supplies an address adjustment factor in the A-register on entry to a

subreoutine,

CI{APTER 8: WRITING FORTRAN PROGRAM

8.1 Program Writing
The format for Standard FORTRAN programs is based on the use of punched
cards. Since the majority of 905 FORTRAN users input programs via the

medium, paper tape, an alternative format called free~format is provided.

The Standard FORTRAN formatl for prOg}:am input is referredto as fixed
format. -

Column numbers in fixed format input are determined by counting the number
of printing positions from the leit hand margin (i.e. the number of signifi-
cant printing characters since the last new line (linefeed) character,
including space but exciuding null (blank paper tape}, carriage return and

erase. o] -
8.2 Fixed Format

When writing pr g ains in fixed format,. a FORTRAN coding sheet should

be used, with individual character positions marked on eachline {squared graph

paper may be used as an acceptable alternative). The first six columns
are reserved for special use, and columns 7 to 72 usually contain statements
(spaces are not significant in this area except where specifically stated

e.g. Hollerith strings). =)

The significance of the varicus lines are as follows:

a) COMMENT lines e S]

A cornment line must commeénce with the letter C written in the
first column; the remainder of the line contains text inserted

b} the programmer. They are used to improve visual interpreta-
tion of the text to a programmer or user who wishes to under-
stand or modify the program, or for the purposes of the original
programmer who returns to modify the program after considerable
absence from the program(Comment lines are ignored by the
compiler, but mist not cccur between 2 line and its continuation
line, or between two continuation lines).

1 linc is the first line of a statement {frequently it will
y line of a statement. It is distinguished by leaving
blank or zero. i.e. the sixth significant character in
either space cr digit 0). Columns 1 to 5 will either be blank or
4 stztement number.

—

ontinuation lines -~ . .

line is used to extend a2 statement which requires
mors characters that may be punched on a single line. It must
“follow an initizl line or another continuation line (Comment may
not He used in the middle of a statement),

Page 83

o pemicarm s ey

T ey g i e e ey

FR—

NOTE:
- d}
8.3
NOTE:
z2)
b)

{blank) or zero (0} in column six.. In practice, it

A contiruation line is written.with a character other than space

the digits 1 to 9 to number the continuation lines »
line. There may be up to 19 continuation lines tc a single statement
in a Standard FORTRAN program, but S03 FORTRAN will not
detect the limit.

There is 2lso a limit on the complexity of 2 statement, the
complexity being expressed by the number of ne d expressions
and function calls.

It is recommended that columns L to § of a2 continuztion line are
leit blank. '

END line -

An END line is the line which terminates a program unit,

»

It should be w xi ter with spaces {blanke}in.olumns 1to 6, and the
letters E, N, D incolumns 7, 8, Y respectively. The END lineisnot'an
executable statement and the statement preceding it must be a
GOTO, STOP or similar statement. If the program execution

L)

appavrently leads to an END line, the effect is undefined.

Free Formaszat

. The compiler discriminates between free and fixed format 1nDut
P

as follows. Fixed Format is assumed m)umly’bm if the first
character or the first line of & program unit is a character {
(apart from new line) ‘this.intreduces a comment line; the program
unit is read as free format. Every free format program unit must
start with a comment.

It is not suificient for only the first of a group of units to start
with a comment.

When either writing or punching programs, the following rules must
be observed:

Programs are wriiten on lined paper with a vertical line approx-~

‘imately 1§ inches from the left hand margin,

Each FORTRAN statement starts on a new line and the statement
proper is written to the right of the verticai line {columns 7-72incl).

Statement numbers are written to the left of Lhe vertic l'li
{columns 1-5 incl.).

Continuation lines are to be indicated by & currency symbol{§) to
the left of the vertical line (Continuation lines are used where the
statement is too long for one line of text).

Comment lines in free format are to be indicated by the symbol [:
written to the left of the vertical line (In fixed format,the letterCis
used for this purpose,again to the left of the vertlcal line). A cornment
line is zg)nored by the compiler.

£y When punching, any code to the left of the vertical line is punched
first; two spaces follow and finally the statements.

8.4 Punching Instructions

An example of program punched from coding is given in Section 8. 6.
Punching rules are as follows:

a) The program can be punched on any type of tape punching equipment
B operating in 900 series, ISO, British Standard or ASCII code.
' Whatever equipment is used, the punched tape produced should ke
verified {using a verifier punch) by a second operator, or should
_ be printed out on the teleprinter. The print-out produced should be
checked against the original program coding to ensure that no
punching errors have occurred.

------ NOTE: On some type of punching equipment newline is punched as a
single character, whilst on other types a combination of carriage
- return and line feed characters is used. On this latter type of

- " equipment, N consecutive new lines should be punched as:

carriage-retarn, N line-feeds, blanks T
b) A program can be written on a pre-printed FORTRAN coding :

Sheet or on lined paper as specified in Secticn 8. 3.

c) Always punch the full written program {i.e. include all blank lines,
spaces etc.} to ensure a correct print-out. '

- d) For Free Format text, always ensure that two spaces are left
between code to the left of the vertical line and the rest cf the
information carried on that line of coding.

e) Exercise care to avoid confusion between the following sets of
characters: ' '

Figure 0 and the Letter O

Figure 1 and the Letter I
Figure 2 and the Letter Z
Figure 5 and the Letter §
These characters must be punched correctly and punch operatofs must

familiarise themselves with the various punching conventionsused by the
various programmers in their coding.

NOTE: There is no universally accepted convention, even for distinguishing
B between letter C and figure 0, although it is common practice to
slash a zero (P). .

- f} Always run-out about 6"(15 cm) of blank tape at the’ beglnnvno- of
every tape punched. . - _ P

LR
+

)

8.5

If an incorrect character is punched, this may Le rectified by
backspacing and overpunching with an 'erase’ character. The

‘erasc! character does not vount towards the masximum number

of characters that can be punched on a line (see b

A line of text must not include more than 80 characters (blan}\ and
erase do not count towards this total). S

Names Starting Wit;‘;l Q

If the first character of an identifier starts wzth the letter ¢, the second
character must be the letter 7. : '

8.6
{

Example of Written Program in Free ~Format

MATRIX MULTIPLICATION
SUBROUTINE MXMULT {(A,B,C,1,1,k)
DIMENSION A(I, k), B(1,J),C{J, k)
DOUBLE PRECISION AA

A= B¥C
DO1II=1,I
DOlkk ,k
AA =0

DO2J3T=1,1 o
AA = AALB (11, J7) * C (37, kk)

IF (AA-1D19)1,1,4 | :

A{IL, k&) = AA . . : .
RETURN

WRITE (3, 9) AA

GOTO 1

FORMAT (22HINNER PRODUCT TOO BIG =,
D20.10)

END

This program would then be punched thus:
[MATRIX MULTIPLICATION
SUBROUTINE MXMULT (A,B.C,1,7,k)
DIMENSION A(L k), B(I,J),C(J, k)
DOUBLIE PRECISION AA

[A=BxC

DO 1 II=1,1

DO I kk=1,k

AA=O

DO 1 II=1,

I
DO T kk=1,k

AA =0

DO 235=1,7

2 AA=AALB(IL, JT) *C (JJ, kk)
- IF (AA 1ID19)1,1,4

1 AT, kKk)=AA

RETURN

4 WRITE (3, 9)AA

GOTO 1 .
) Page 8¢

9 FORMAT (22HINNER PRODUCT TOO BIG=,
7 D20.10) _
T END

Arn alternative layout for the coding of the example in fixed format

would be:

C MATRIX MULTIPLICATION
SUBROUTINE MXMULT (A,B,C, 1,‘,,K}
DIMENSION A(L K}, B{I, K}, C{J,K}
DOUBLE PRECISION AA
A=BEC
ool n=1,1
DO 1 KK=1,K
AA=0
DO 237=1,7
2 AA=AASB(IL JI)C (JJ,¥K)
Ir {AA-IDI9) 1,1,4
1 A{IILLKK) = AA
RETURN
4 WRITE {3, 9)AA
COTO 1 :
FORMAT (22HINNER PRODUCT TOO BIG=
1 D20.10
END

]

8.7 Correction of FORTRAN Programs

Corrections to a ¥ ORTRA’\? program must be made to the original FORTRAN _

text. Individual units changed should be re- compiled.

Page &7 & 85

CHAPTER 9 COMPILER OPERATION

‘The compiler is designed to process independent program units, which it

converts into relocatable binary form suitable for presentation to the linking
loader. Once compiled, 2 program can be incorpoerated in any number of

object pregrams.

A secondary output identifies the program upit and specifies to the programm-

-

er any errors detected during compilation (see Chapter 10). It also
O

optionally supplies a store map and a lict of external identifiers refer-

enced by the propram.
Y prog

9.1 Options _ _ _ _ _ “

Opticns are expressed a5 an ccial number formed from the sum of

the individual options required by a program; if all options are omitted, a
standard option 00 is assumed, Values of other options are:

i
i
1 -
!

01 Syntax check only

oy Data map required L co . .
04 Data map output to pun-ch |

10 - Pack in'tegc:r arrays o . . ’

Hence, a program with standard option 00 calls for normal compilation

with standard integer arrays {(i.e. not packed). A program with option value
octal 13 calls for syniax check (octal 01), data map requirement (octal 02),
with packed integer arvays (octal 10}, ' o

9.2 Secondary Qutput - - ..

The heading FORTO?2 is output when compilation of a program unit

commences [the serial number identifying the version of compiler in use,
which can very). Errcr messages,if any,are next output and are followed
by the data map (if reguired} and finally the terminating message. This
output takes the form: S o i

v

UNIT »ooxxxx SiZE=nnnn

where:

d

=

NuNxXxK 15 the unit name, a

1

annn is the number of words occupied by code, constants and local variables
bles or arrays in COMMON.

and arrays but NOT varia

When an error occurs. a value for the unit size is output which includes
code, constants etc., This value does not include the error statements
and the value should therefore be treated with caution.

9.3- Ervor Reports

4

L4

& ¢

The general fovm © ror vutput indication is:

Page 89

SE——

ttt nnnn 1111 B S o
\;rhere: h

ttt is the error type code (see Chapter 10)

nnnn- is the last statement numbér eﬁcountered, and

1111l is the count of non blank lines since this statement number.

If an error is encountered before the end of 2 statement, the part of the
statement already processed will be displayed on the next line.

EQUIVALENCE statements are not processed by the compiler until the

end of the specification section of a program unit. If an error is detected
during this processing, the statement number and count of lines only
indicate the first statement following in the unit which is not a spec1f1caLmn
staternent. A further number (cc) is output which shows the position 5

"reached within the total EQUIVALENCE information (regarded 2s a smgle

continuous line with blanks and the word EQUIVALENCE omitted).

If the line (indicated by 1111) is a comment line, the error recorded refers
to the preceding statement. For all except warning errors (identified by
the initial letter W), the cutput of RLB is termmated

With_ the exception of error ZZ {compiler workspace full), the remainder of
the program unit is scanned and checked for correct syntax. Hence, any
error messages output from this point (i.e. store full) although they may
be useful to the programmer, must he regarded with caution.

9.4 Data Map

If the data map option is set, upon detection of the END line statement the
following information is cutput: ‘

DATA MAP @ »xooxxx

YYYYYy aaaa b
Yiyyyy* aaaa ! bbbbbb

™ -

where:

zxzixxx is the unit name; there is an entry in the map list for each variable’

or array referred to in the program unit.

YYyyyy refers to the symbolic name of an item

aaaa refers to the relative address of that itemn, and

t refers to that address type. The address type can be:
0 Undefined '

I COMMON i

3 Local data

4 Indirect address in local data e
: Page 90

*

In the instance of COMMON, the block name bbbbbb is also given,

(All addresses are relative to the start of the program unit or COMMON

block. Absolute addresses can be derived from a global list after leading
of the program.

The 'undefined! type {value 0) includes parameters of statement functions,
but canalso indicate miss-spelt nameas.

After the vaviables and arrays are printed the label list is of the form:

LABELS

DNNNDND aaad

where:?

nnnann is the statement number

aaaa is the relative address of that statement (relative to the start of the

program unit)

NOTE: If the address is omitted, this means that the label has been
referred to but not defined.

The last section of output lists the external references in the forms:

EXTERNAL

PPPPPP

bhhbbb ssss ' .

All external procedure names pppppp oOr COMMON block names bbbbbb
referenced within the program unit are included, the latter indicating the
block size by ssss. Blank COMMON is displayed asablank with a size.

-

1

Page 91 & ¢2

O R

[PIRTT—
b

CHAPTER 10: ERROR MESSAGES

Included in this chapter are the error messages which are output at
Compile-time, loading time, object time and the Control error reports.

10.1 Campile«time Eerors

The following table contains error messages which are output during

compilation.

R Page 93

. 1y

Sareiee Mewer 5

"1 restdor ur OQ
f37odsstw O fpouryop Aproare requinu juswoje)q

"NOWWQO Ut PaIe[d9p JuouIal {SjUdWale BIep
3O 2oquinu o3 Tenba jou 3Si] eNIRA UT SWDIT JO JaqUnp

*anbriqo ao @Eﬁmoo_.ﬁ?/ Burpus jou 3517

3UBIOUOD TE2X potaroy A1309x100 © jou jaxed AxeurBeur
TJUBISUOD [BOI YItM UOISTIUOD

03 Burpest xojerodo Ty ur zoiie o1qrssod {qunoo

YILXSTIOH oxoz {Bursstw £3181p jusuodxs {moljroAc
jueisuos xoddiur fjueisuco 1891 Ut MoOIJI940 juduodxnsy

uswialeis NOWWOD ®
ut poxesdde dpesafe sey 10 ‘xojowered JRWIIO] ST Wol]

. *ie] og
x.muﬁhmmoﬂmmﬂuﬁﬂovmuoo&xo mwpuwhdﬂundﬂsoﬁaw&

yiodswesi 1o Burssiw 01,

‘AriIxe [RUITIO]
JT 9IQRLITA TRWIICY IO ‘JuR)SUOD JOU UOISUDWULI(]

peisau jou sdooy O

I0II3 JUdWDGRIZ O]

0TI ISTL JUB WOV VIV
043D XEIUAS JudWDIRIS VIV

jueisuod xo(dwos prreaur

uol3RWIo] Jueisuod jedsqql

NOWWOD ut 98esn swep

PUNOY 30U X I930RIRYD

I0XI9 Xwjuds JUdILIRIE NDISSY

10119 10jvawIOOp Aeasy

0d

100

ZVQa
Iva

IND

IND
NAD
XHD
ssv

qav

DIAUWILX T 10.1Ua UUI0 o)

uonidixosa(l .

9poD roxas

SI0LID SUi=ofIdUIo D

e
[V

A Po Lo quunuun HowalReIs I VINYOI
. ...l.l!.l..ll!r)l...-ﬂlﬂf[.llfljl:l-l.fl.

q04

sasoqjuexed posord Aueus ool | T 63T

sosayiuared uvedo Lfuwpug 0o,

: 8XY
. ‘xa1dwod ur g zo0 I2893ur .
‘TRUOTIRIOL uTyimM 1201807 10 xo1dwoD regioA
[} .
FITA IO unissoxdxo SHowyitae ur puersdo ieotdory m UoTIeISOss® 994, 1230111 LT
: _ w .
‘939 ‘szojvasdo Lxpun 2alsgadong | . e8esn Azeun 1091r00UT 9K
JuowmBae uw se P21onb uoryouny .
uawelels fuswmSre 918uls s® jou pue ‘Juewuniie ' . ‘
/3drxosqns Aq POMOTTIOT 10U surwy uonduny 1o Aexxy Pl 93®sn uoTyduny 1o Aeaxy GXo
. UOTIBUTIQUIOD foleiado
“toreredo dyjouyirae Yitm pueaado [estfor 18 -5 /Purasdo 10 zo3erado Tedoryr P
_ "8ro3exado feworyerax . : .
oml o ‘uorsgeadws TeuotiRiaL ur weagy xo1dwon i . odesn IeuoTlersy 4O
wos soxdxs I979w
o omeaed uryiim Stseqiueaed poyojewup X
“owudtss e Ul =, PUO URY 0w 8- s8egn xo3eaedo juswiooeydeyy IXT
: TSUOISULWIpP Jo asquinu Ydjeur jou ssop .
sydraosqns jyo ToquInu ro ‘jueisuos jou st 3draosqng ADNETYAINDI wIyiim 1draosqns Tedaryy NeCl
[y 5
IUUWRX T X0 JusuILLo ©

UoTIdII289)

P00 I01xg

Page 95

ey

bt

_ eanpedoxd 16 Aerse . onw

Se pauryop Apesite lojereroep Aeriw uipsovad swey I0IID DUIBU ABIXY " 90N e

: ¥

pumnoy jou ‘payosadxe _
. JUBISUOD 0 SIqrIIRA xo8a3ug SON
‘punoy jou . d)
. ‘poyoedxe orqeriea xodojuy . _ PN
.ozmﬂms,.mm pest 1o Aeire se . . .
pouryep Arsnorasid owey sanpadsoad se pajonb DULEN. dureu sanpedoxd pryeaus CON
"PUNOJ 30U 30q JXDIUOD woxy pajoadxo :
(ro39wered 1ewrog jou) sweu Levilw xo oIGRIIBA durssra srqerawp & . 20N
‘punoy Jou InQ 3xXo3200 o
uroxy pejoadxd surwy eanpadoxd 3o ‘Leiae ‘erquraTA Jursstwr suren ' AN
« AT 191801 utyiM g7 ,,H.moﬂmo..m I0ar9 JI resrdory JAI7Y
"dutals yIraorron A
UTHITM PO9T 23U 10 ‘Qunod I9308IRYD }09.1I00Uf I0II8 JURIBUOD YPIDION " TOH
10139 XBIUAS JUuSWIBlR]s 'shXels) OLD
sjuemnfie Inoyitm NOILONNL . N
o | ﬁﬁﬁmxm 10 ugoﬁﬁaﬁ . | uondiIose] 2pen .Ho.ﬁmﬁ !

: - '9lq®ries s¥ posgn 1o ‘swreu
sanpoaooxd teuasixe 1o hdnnm mﬁv@cﬁwvhvmmﬁax

uswRIRIS O ® ur roquunu jusweajels op
"$1181p 941y spovoxe SduULIpIeX Xoquunu jusuralelg

uonjruryep
I9qunu Juerelels urym FOIDBIVYD DrIdWINT~uON

, 'OQ perduwr
[o ‘stseyqjuszed mﬁ:umo ..Eoﬁ..hBOQ ﬁoS&EH

suieu Avzxe 1o TqRITBA JOU ST surey

v

aureu Aexge
J0 .Hoﬂﬁd..ﬁﬂ uﬂﬁﬁvu.m.gm jou m._n OUQOAOHG.H p.m.E.HOn,m

.w@UE@hHSUUO ire 10u Ng sawiosg
§39939p voyn g1y fxopeot oy} Aq Poltwaed joN

juswrejels yo uolTUILIL 9] zadoadug

I0II8 swrEn UOTIDUNY jus ursyelg
10Ix9 pousnboag juawraieig

9ouUsIayeL

I9qUINU Jusuraje;s DITeAuy
_ uorTUIO P
199Ny juswsiels PiTeAut

IoXIs

*xBIUAS uorssoszdxs 1draosqng

10119 xmﬁ&m 1817 uznﬁanggcw

10119 sweu jg1] nding /3ndur

. “ I0Ix9
IIUDIVIDI JBWIOF LT M /avaya

viexdoxd
UTBW Ui jusursje;s NYQLIY

BUWIBWI0Tq = surru INPIVOIS

WIS

JILS

Tss

INS

- Xds

m L,n). .Nm »

My

MYy

LY

Ndgd

arduwrexs 1o uswwro

9POD 1011y

Page 97

1
leltrroy vorsroAuco
uajtIm gv Pa1038 jewrog woury Surgsiw Jutod tewroaey SaIMm
IvwIog aorsIsAon
UDIITIM 8T porogs TeUIIO Aq PRMOTI0F Jou ro30uy a1edg ol
: _ . UaNIIM 8w porosys rewro T
- BurssTux udy NG ‘Iojver syess E23edrpur xejulg X0YD'} symwOE Tadoxdwr C I M
usyTIm se PII0IS T Jewnro g do2p 003 pojsou S23oyuaIeg ZAM
UD3ITIM 5% porols 51 jeurto g LVINYOJ ur oxoz Todoxduug TJIM
_ . OX9Z 03 395 ST JueisUOD
m?.hou@ﬁﬁxommnwmv 6T 8T Jusuodxs jo onTeA wnwirxen | jueiswos I®ax ur morraopun Jusuodxsy XM
2d4y poyjruazsd JO 10U 81 Judweguys Uoneuywaxo I, HOn3RUTWAS) O Tedarry 2aM
. door O pPejeuwIajup Tam
) rm;wo.ﬁ.ﬂm BuTurE
. TO1I3 xejuks Juswoes adA g, SAL
, ‘yiduer Suocam Promdoy
‘Yydrews Jou op Promioy 10 SINBL % I5x7y fuoriouny
WRwRleIs 10 ‘O “Buswiufisse powrzoy A11391100 JON T02I2 od4; Juswrsyeyg ALS
f
oldwrexry 1o usmc ruonidrrdsocy °poD xoxzsy

Page og =

T e e M vkt e

LT ISR S

‘PRIoulY 91 wiagy

"l ‘NYNLmy OLOD Furmorog ucuﬁmuﬁm.vo:@aﬁnb

(o8wsn Paurrep eouevivedde 183T.7) .ouno.&&wh_

1ndyne /anduar uy 18Q®] [eUrIoU g0 ‘douUsIDIDI
Tewrrou uy pasn 124®] pajercosse - LYINYOJ

$90uarrax Jusnbosqns Aue Y1 PasT 81 wonruzop MIN

TUON®R) sxw 71 3eary
RWMNRIS VIV ut Jo wswmdae se pajonb
IUBISUOD Yjtaoriop Ul s1910vreyd 71 Wn ey

UDPIIM s® parags TeUwrIo,y

"PoIouldr wrayy

Burireds jueisuco 1eotdory

pPoussrrjugo
soInx EONIIVAINO [eroadg

HONITVAINGT 4q doeq

PPPUaIXo aseq NOWWOD

AONATVAINDD YT NOWWOD
o1diinue yo Tolvwered [ewro g

SUNT UNT poaxsquuny

qied oN

" I0xx9 sfesn Iaquunu U waeIg

Iaquunu
Judwaje;s PauLzap-Argnoy

‘I0xXD
WNed Jueisuos _gﬁ.g:oH..H

rod
Tewiaop Hurmorioy "3p op

S M

tOM

TOM
PNM

ENM

OHM

gaM i

STAIERy 15305 wtao

ot s . e et
uorzdradsay

ARt

OpPOD doxarg

Page 99

torssaxdxo ge ydns m.&momns.&bﬁmmmsmﬁ I0J OST® pue
‘satIjUL m.ﬁmﬁoﬂuﬁu Surjernuunooe 107 Posn s1 oordsyaom

. "SuQy 00l
amﬂpo.Huepﬁﬁ.ﬂomuwoﬂmoonoﬁuz nouoﬁhmﬂuumn.mm

: . "SmoT[0%
ﬁ,ﬁomuuwanoooawus.ﬁwg,wuhﬁm uo“wnmmonESm@am

i

Iy 2oedsyzom rorrdwon

*I0IXD
UOIS IDAUOCD QU] JRULIOfmDOT T

10123 9powr votnyerjUDUOdN Y

to3erado teoifoy pireaus

77

AKX

WXZX

OTIA

Page 1 e

"83181p ¢ epoooxs
12a®y ‘s3181p ¢ spoooxe 129®1 ‘s3181p 7 speooxo uorloun g

-

Aezaw 10 ‘91qeTIvA ‘JueIsSUOD JON

O-I0 ¥ jou ‘yo3jer BT IOIDBITYD J62T.q

4

3uoy oo3 protg

I9}2BIBYD prIRAUT

pueaado vﬂmbﬁ

1€ SpP999%3 9po0 wonzuny

1330%IRYD 38213 1edaryy

BI0OIIY 9pol) suTyS ey

X

X

£€X

X

X

YDIBW JoU Op vanpesoird
© JWES JO ST{RD om] uy pojonb siojourered 10 Ioquump

juowresaBestp [yes DINPIDOIT

mxwo.ﬁ.ﬁﬂ dutuaepm

CAM

. ﬁaﬁmxm IO JUDUWIUWIO S

uot}drIo8a(]

O e T T
°pOD IoraTg

Nerhuias

-

10.2 loader Error Nessages

See MASIR manual.

Page

101

AUl waym ‘(IO 1o ,NQOEA.W ‘qQOW w1y ZQd jo osed oy} ur 3dadxs paurnisa st Im

"pRUIn}ea sT juswindiw jsary
S9I 0X9Z B ‘UOI}BNUIIUCD UQ

PR _ _ cxoz Aq oxoz u o
L DED 'QAD WUD TA0 Jo uonyenjusuodze pordwolyy yAZACH L
. ' @
pejsonbox : M%
LYOsAa ‘1u0s Taquunu 2411280U JO 3001 srenbg NSsd -
‘ ‘WIQ ‘SODD | “worrerado
‘NISD "TONS ‘WIQ ‘dX3D dXda *dXF ‘OHD ‘dAD - ¥0 3INS9X §® MOIII0A0 Juduodxry OOnm_..
TWNIOI uonieasdo
‘NDIST “INIW ‘IXVW ‘(uotlerjusuodxs 1080jut) 1D ‘AT | JO 3INS91 s® moraoa0 sofojug 109
“Jusuodxs jesx aanedou
- o _ Lq juswnfie 1esx sarjeSou ‘
{esurinoa uoirRIUBUOAXD) QAT ‘YID jo uorjerjusuodxs pojdurn)ly NN
. _ paisanbos juswniae
"DOTID 01D0TA FOTHOTV ‘DOTA ‘DOTVY 0x9z X0 varjedau yo unprreSory TING
"AOWQT “dOW 'AONY ‘AID ‘dds ozoz Aq uoistatp paidweny 7dd
'SAVI ‘(sunnol uostarp xeBojur) (e Z2L0TCT~ = jusprarp aa8ojuy Iam
TLNIGI “INT ‘XIgr ¢(eBexoed dupuYltIe) JAD 1289JUT 03 UOTEIDAUOD UG MOTFIVAD) IO
.ffitrflfi!;.w,o,.ga mﬁﬂ ATtjou hwﬁ UDTYm auTInoy uonydrissaq . BP0 xoIxy

 *ssazppe puezsdo oy (3ussouxd j1)

PUOD98 U] pUL $53Ippe []ed BY3 ST SS0IppE 38173 oYy s3zodox osay; [je Uy |

suoHduUng TednRwsyle W woay sjxodor Joxxy [¢ 01"

$ICIX DIl uny ‘0 I

"I930RIEYD
1ederr BurrouBy UCTIRNUIINOD §p8neD lIeIs0y

_ ‘Burjramasao :9 -9
‘wresdoxd ur aoxxs SNOLI9% sajediput A1qRqoryg

: _ "(Arev11 T2quunu
ﬁﬂﬁﬁkcaumv.vmﬁnw&dm Qmﬁaﬁm"w.o

(poaouly sze syuerq Juipeay duy) -

®1%p ur I0j0RIRYD TeSoryr

. 1182 OIYY Iadoaduug

“ad41 9o1a0p 10y uotrerado zedorduur

€ UBY3 123v9.:3 1oas] stseueaed 1o
FBUII0T Ut s1soyjusaed PoydjeaU

10115 Xeuls jewrroy
ABUWIOY U X33DexByD 1=8a11T

‘Stsayrusaed 3oy
U 5T JrWIO] JO I930BIBYD TRIjTUY

ISIT pue
FIBWLIOT usomiag Juswresalestp odh g,

‘mdur IPWror-921y 107
IS Ut Wy [eorSo7 a0 ‘uorjeroado
HLTAM 93w poyroads jewrzoy mory.g

IoMm.

804
LOT

904
E1elc

rO=
£tod

204

HOIC

uor3dird go(

9po0D JoIig

L T L

..H.gmo,fm Y3 Jo Suruur8oaq 2Ujl 2ae sx91dwIRYD 9 TRUTT
S} ST $50Ippe 3sa1y o1y ‘(s eyoed Hsmuso\usmﬁv oI sk

‘it0day 10133 ndingfandar zogegp

‘sgoappe puriado a3
BT ST 9WRY durjnoy

Page 103

T ——.—

—— . usuodxs

FO I2QUUINK DBIRIUNII-UI M UOIIRNUIIUOD SO8NES lxeiSOYy

e8urt j0 jno jusuodxqy

e8urt J0 jno rsda3ul

0

EOM

COM

uswuio

QOIATIOS B (]

SPo0D XOiIq

s e g

" Page 104

A

10.3.3 Control Error ‘&’eports

The table which follgws contains control error reports.

Routine Name !|Error Code | Description Comment
3 ' QFP EIF Invalid parameter J Should only arise
= | code) when QFP is calied
b QFPp EMS Invalid mede) from SIR segment or
' setting

) in-line code

,,,,,,, QCG ERR Index out of First address is call
range in and second is index
computed GO'TO variable. Restart.

causes continuation
as though index variable
had value 1.

————

: Page 105 & 106

CHAPTER 11. OPERATING INSTRUCTIONS ' o

The following sections contain the Operating instructions ('fer operating
within FAS or RADOS operatfing systemssee the appropriate Operating
System description) for a paper fape environment: '

11.1 Compilation

13 Input the tape 905 YORTRAN CoOMPILER " by initial
instructions (Entry at Iocation 8181).

2) Enter at location 16, Symbol w will be cutput on the on-line
teleprinter. ‘ '

3} “Specify the required option, by typing ietter Ofollowed by one
or two digits, then newline,

The digits s ecify an octal rumber, the sum of the values required arve
made up from: ' ‘

01 Syntax check only, no code outi)ut.

02 Data Map requiréd.)
04 Output data map to purﬁch. .

10 Compressed integer array storage allocation.

If option zexro (00) is esed, this implies normal comgﬁilatiori, no data rnap,
and two words allocatad to each elament of integer arrays (for compatab-
ility with other FORTRAN comnpilers layout of COMMON areas). Option 3
Tequests a syntax check, with cutput of data map to the on-line teleprinter.

4} Load the FORTRAN source program tape in the reader and type
Mor R, to compile the program. Program units wil] be read and
pProcessed until a halt code i read (or '"dictionary full’ error occurs),

5) To process further Frogrems, repeaf from step 3).
&) Wind up ezch relocatable binary ouiput tape as follows:

When punch output is coimpleted tes - off the tape and labe] the
underside of the end mearest the tear., Wind the tape to ensure
Py o - "]

that the labelled end will be read ficst by the reader.

7y The units cormapiled are new ready 1o load and run. Program
units may he compiied in varicus WAYS 1.e, . ;’
Together

Compilation of each unit {meain, function or subroutina} is indepens

dant of other units in a program.
1.2 900 Loader Operating Instructions for FORTRAN use., o0 0

The '900 Loader’ tape distributed with MASIR is also used to load 905 .
FORTRAN relocatable birary tapes generated by the compiler {(sum-~c
binary tape}. Procecd zs foliows: ' o

1} Load the '900 LOADER"® by initial instructions {entry at location
8181}. : ' S ' ' o
- 2) ~ Enter at location 16; symbol & is displayed on the teleprinter.
" 3) Type options into the loader in the form: -

Ofollowed by the option value in octal {see _S&C":iOll; I3yl

+

4) ~ Load the first relocatable binary tape in the reader and type L
to enter the Loader. This tape is read until the tape reader
unloads. :

"5) Load subsequent tapes in the reader and press the READ button.

6) Press RESET, entsr at location 16 and type option 03L to load

the first library tape called '905 FORTRAN LIBRARY VOL. 1
However, if output is required to paper tape, the option 5171,
should be used, o N :

7) - Load the tape '905 FORTRAN LIBRARY VOL. 2' and press the
- READ button. ; :
8) When all programs are loaded, press RESET and enter 2t locztion
16, :)
9} Type M.

If there are any unlocated labels, these are printed on the
teleprinter (i.e. global labels, Program names or data labels
referenced from programs loaded but not included on any tape
actually loaded). '

If there are no unlocated labels, GO is output,

If loading was direct into store, the program may be started

by re~typing M. If the loading process produced a binary tape.
this should now be complete; type M, runout the tape and tear
off from punch, : o .

[e—

gy

10)

11-3

If there were unlocated labels; either return to step 3)or 6)toload
further tapes, or type M to run the programdisregarding the missing
labels (0V will beoutputto indicate override, inthe latter casej, If
eutput was to paper tape, it will be completed. Ifloading was direct to
core store, the program may be started by typing M again {i.e,
for the third time).

If there is a MATN program, the executable program will be
entered at this point, irrespective of the order of loading tapes.
The MAIN program may be either a FORTRAN main unit, or a
MASIR unit with global label MAIN.

If there is no MAIN program, the executable program will be
entered at the first location of the first tape to be loaded, (It is
possible for this unit to be a FORTRAN subroutine with no
parameters, in'which case the RETURN statement of that sub=-
routine must never be obeyed). '

If 2 sum checked binary tape was produced, this will be loaded by
initial instructions. When loaded, the program may be entered
by jumping to location 16 and typing M.

If an option is typed before typing M to enter the program, this
will be held in the A Register on entry. This option may consist
of up to 15 digits (i.e. 5 octal digits) long.

Type C if continuation required after a halt code on inputting data,
PAUSE, or run time error message. R or C may be typed when~

ever the symbol . is displayed.

Loader Option Bifs

The loader option must be either a one or two octal digits, the sum of the
digit values implied follow:) :

Bit 1

Bit 3

Bit 4

‘Bit 5

= 0 if loader to be initialised {first prograra tape).
= .1 if loader not to be initialised {(subsequent tapes)

= 0 if everything read is to be loaded

= 1 iflibrary scan (only load programn units which have
been referanced but have not been located), Ignore
units which have already been loaded,

= 0 if loader is to store program in core

= 1 if loader is to ouiput program on paper tape or backing
store,

= 0 if loader is to store program on backing store,

. 1 if loader is to output program on paper tape,

(Bit 4 is ignored if bit 3 = 0)

if the program to be lozded is to use the built-in routinas

H i
L =

if pfogram to be loaded does not use the built-in routines,

Page 109

- E *

Bit 6 = 0 . ignore _ L _
o= 1 - freeze current dictionary and store layout. If option with
bit 5 = 0 and bit I = 0 is now typed, the loader will be
-reset but the programs already loaded will not be lost.
They will be preservedinstore for use by future programs,
unless overwritten at runtime. ' :

Bit 7 =

o ignore
= 1 list labels
Bit 8 = 0 print first/last messages
= 1 suppress firstfiast messages
Bit 9 = 0 halt after warnings ¥CLW, *COM
= 1 continue after warnings -
11,4 | Store Layont - _ o L _ - _ e o

11.4,1 Ioading _ :
The loader occupies locations 128 to 2800 (approx.)
The program entry instructions cccupy location 15 to 19

The dlctlonary formed by the loader, occupies store from location 2800
upwards, with five locations more for each global label.

Program is stored downwards in each module becween the free store limits
set by LODSET. A store full indication is given if the program cannot be
stored without overwriting the loader or its dictionary. Blank COMMON

.overwrites the loader from 128 upwards to the higher addressed store.

If a2 program cannot be inserted into a given store module it is loaded into
the next module down (Down indicates towards the lower addressed end of

core store), if sufficient space is available.

If loading via paper tape reader, the program is not actually stored, so
that the store used by the 'Loader' and its dictionary may be {illed with
program, down to the top of the blank COMMON biock, or location 128

if there is no COMMOQORN.

11. 4.2 Different Store Sizes

If a cdre store of more than 16K is used, LODSET is used to set the
actual store limit LODSET is built into the '900 Loader' and its use is
described in the MASIR operating instructions.

905 FOR TRAN programs require 16K of store for compilation since the
computer and its dictionaries ete. occupy at least 0K of store. However,

it is possible to load and run programs on an 8K 900 series computer, if
the loader is set for 8K operation by LODSET.

11.4,3 Library

The '905 FORTRAN LIBRARY VOL. 1! contain all the Intrinsic and Basic
External Functions and special FORTRAN object tirne routines,

Poge 110

Fa0s ?ORTRAN LIBRARY VOL. 2! contains the floating point, double length
and complex arithmetic routines (QFP}, the READ/WRITE routines (QIO)
and PTEXEC. PTEXEC contains character input/output, error routines
and program control (see EX900).

11.5 Store Map at Run~time

Store maps for typiéal program in either 16K or 24K store follow:

- PROGRAM UNIT
A ‘ _
NAMED COMMON X -) . Module2
PROGRAM UNIT S R ‘
B . .
16384 [INAMED COMMON
v ' 16383 NAMED COMMON U :
v) PROGRAM UNIT Module 1
NAMED COMMON Z E
PROGRAM UNIT NAMED COMMON Vv
C _ PROGRAM UNIT F
""" LIBRARY ROUTINES | LIBRARY ROUTINES
8192 UNUSED STORE 8192 UNUSED STORE
i 2130 UNUSED 8130 SCB l.oader
PROGRAM UNIT PROGRAM UNIT
LIBRARY ROUTINES
PTEXEC (Library) Library
Module ¢
UNUSED STORE Routines -
________ 2800 BLANK - ' PTEXEC (Library) |} Space
:] ‘ UNUSED STORE Ocupied
f by
COMMON
S BLANK COMMON LOADER
128 B : 128)) :
321 A.T.U. LOCATIONS 32] A.T.U. LOCATIONS
16] ENTRY POINT ETC., 16 | ENTRY POINT ETC.,
8] SYSTEM LOCATIONS 8 | SYSTEM LOCATIONS
O|REGISTER STORES 0 | REGISTER STORES
24K 16K
The 16K version on the right can only be loaded b§} allowing the loader to
generate sum checked binary paper tape.

Page 111

Thesec maps only apply to paper tape-environment { but not to either the
FAS or RADOS env;ronment)

T}we total library routines should cccupy about 9K of core store, but it is
highly unlikely that any one program would use all the routines. Only thosge

-routines required are actually loaded with a few exceptions, e.g. if SIN is

required DSIN will also be loaded, since these are to be found in the same
program and use the same main code section.

The majority of programs will require routines QFP, OIO and PTEXEC,
which together cccupy approximately 4000 words. Integer only programs
will omit the routine QFP {approx. 700 words) and programs without READ
or WRITE statements will omit routine QIO (input/output package - approx.
2800 words}. Input and/6r output could be entir ely in Assembly code. Any
FORTRAN program using any STOP, PAUSE, READ or WRITE statements

will use PTEXEC (approx. 500 words). a . o

— . ._ . . ‘) ° - . : . —Y" . - Page 112

APPENDIX 1: BASIC SUPPLIED FUNCTIONS

Tables A.1.]1 and A.1.2 lists both basic external functions and intrinsic
fundtions supplied with all 905 Compilers. The principal difference between
Basic External functions and Intrinsic functions is that the former may be
ased in EXTERNAL statéments, and be replaced by user's own versions.
However, the Intrinsic function cannot be replaced by user's own version.

e ik o s s e

W ey - e e

xo1duwon xatduwan I Ien i
s1qno (s srqne L¥0Sa T |
L qeey reoy . 1LuDS Y e f LOOY TAVADS
reo qeoy HNV.L 1 (e)yuel| INIONVI OITOGUITIAH
xarduwron xp1dwon [Helele) 1
ﬂmﬂﬂOQ GHﬁﬂGQ mOUQ.. T
. (suerper uy w
12y 1wy 50D 1 (v)500 | INISOD OIULANONODIYL
xardwo xa1dwo D . NISD 1
eiqno(g °laned ~NIsd ! (suerpex ur ®)
1eoy 120y NIS 1 (e)urs HNIS DIYIEWONODIYL
arqno g 21qnog 01D071a .
Teay” 120y 01DOTV T (e)01301 WHIIYYOOT NOWNOD
xorduwon xa1dwo) DOTID I
elqno(oTquoq 001a v
1oy Teay DOIV 1 (e)®8og WHLIYVOOT TVINLYN
“xardwol xoyduon) JAXAD 1
P1qnO a1qno(y dXF A 1
Teey Teey. dXT T ° TVILNINOIXE
NOTLONNA LNINNDUY TNVN SINAWNDIV . T _
YT SITOLINAS 2O YT N AN NOILINILEA NOILONOJ TYNYILXE

SNOILDNAOS TVNYALYE DISVE 1°1°V TI1dVy -

Eipp. 1 - 2

xajdurc D

| - xorduron

SHvYD 1 SOATOGON
a1qnoq s1qno(aowda Z (%= pow)le ONIYIANIVINE E
91qno g a1qnoed INVILYVJ 2
1299 1293 NV LV Z (¢e/le) uvinze
orane orane e : Amﬂ.ﬁv,w.ﬂ ur ‘anjwua
anod 1qnoq NV LV I Jedpourad 543 51 11ns o)
Tesy Tesd NV I 1 (e) umaoe INAONVILDTY
. NCILLONOT INTWNODUY) AINYN CLNWTIN DY
* IO Md AL SITOTN AS 10 waannn | NOILINIAEG NOILONAL TVNYILXI

(P3woD) SNOILONAL TYNYZIXE DISVE [°'1'V Igv.L

App. 1 -3

e
=) fefaleTy) [rano— |- NIWQ f
xodojuy ; jesy o INIW -
Io8aju] © xeBojuy - ONIW _Wg
: -
RN ‘ Teay INIWY . .\
a . TNTVA
eay . a98eug - ONIWvV 2% (rrZele)on | LSETTVING DNISOOHS |
orqno(_ °lqno(q IXving : - . . -
] _.H@mwuﬁm - 1esyy ,, IXVvIN |
1980juy . xodajur | OXVIN
BY) . j "
Tee Y o ieoyg o IXVINY QD...HMN
oy - 2o8sjur OXVNV 2% [Tede) xyp LSIDYVT DNISOOHD
19893ur . aedsu qow
reay 3 Teoy - dowv | T 2% | ' (Ze powy) le . ONIITANIVINE Y
x28o3ur | . 21qnog LINIAI ,
- , 3 2 >
Hojur . " qes v
1o803u] read - INI o xoda3uy vahﬁﬁ :
reay Teay ANV gawny e o ulig NOILVONAY.L
slqno(y a1qno(y | Sdgvg
xsdaqur Tadojuy sS4Vl
eay resy | sav B | = | INTVA TLNTOSTY
NOILLDONNJ .HZMES,UM#\ _ AWVYN SLNIWNOYV N
. v I ;
“ 30 main SITOTWAS 10 MTUCNAN NOILINIAHF T ‘ NOILONNE TVYNYTIXT . .

SNOILLONOJ DISNININI 2°1'V 31gvi

TYIY

A4

UOIS 1021 21quog ut

Ap_ia. 1 -5

TTEAOT 1 WPWINSIY worsto0sg
318urg ssoxdxgy
u . — Jwowndre XA TIWNOD jo
reayy *opQuwo) DVNIV I 3xed Lxeurdews urelqQ
o JuswanSay xmﬂmcﬁwou
1eeyg xordwion TvVaIyY 1 ¥o 3aed [eey ureiqQ
, juswnBass
. . . ! UOI8Id91g @1qno(10 -
reed Sranod "TONS I jxed 315 1s0wr urelqO
xe8oquy xodajug wiar
Teoy T=oY WIQ 2 (e Te) wn-Te | goNawmaara FALLISOL
Sranor rqnog NDISa
as3o3ur xo3893uy . NOISI
Tesy Tead NDIS : | e | sotm
e - Zejo uls NDIS JO YTISNVYIL
| | (INIT oy sv)
o 8ojuy RS X141 1) xo8ejul o) yeox
(4101] UOTS 10AUOTY Xid
1eax
. - 03 1a8ajuy
1o 19 dequr LVOT4 t UI0l1} UOISIDAUO N IVOTHg
NOILDONNOJ LNINWNOOYY JNVN sS4 NAWADYEY] . ;
~ LT OTTOLNAS IO YTIWNAN NOITINIZ®O NOILDNQJ d<2mMBxH

_Aw;aoovmzchwozmmnﬁmZﬁmﬁZWN.ngmqmﬁw

wowniay
. x91duos ® jo
xajdwon xa1dtto N UM.ZOU _ 1 worresnfuos wedo
wWIo g
) xa1dwioD) utr sjuswniay

d - plesl . ;
Xa1dwao 5 1eey KTANWD 4 1 \. etle [0y om], 601X

NOILONNS LINFTNGDUY HWVYN SLNTNNDEY . . .

10 ASE1 DITOINAS | 1O HTIWNAN NOILINIIFJ ZOH.M.U.ZDM TVNYILXT

,ﬂ?ﬁn‘oov SNOILONAJ DISNIYINI 2'71'V WTEV.L

hppe 1 -6

[—

APPENDIX 2: DIFFLRE\TCES BETW SEN ASA AND 905 FORTRAN

905 FORTRAN is ASA standard FORTRAN, as defined in USASI document

¥X3-9-1966 with the {ollowing extensions and restrictions.

a) The following are extensions to ASA standard FORTRAN.

1. Optionally, free format may be used for program and data
T {see Chapter 5)}.
2. Facilities for in-line machine code {see Chapter 7).
. 3. Some relaxation of ASA standard rules on the mixing of arith-

metic modes {see Chapter 3}.

4. Option of packed integer arrays (see Chapter 2).

b} The following are restrictions in 905 FORTRAN which are not
- presentinASA FORTRAN. :

1. Restrictions on the sequence of statements within a subprogram.
The statements which make up a program unit must appear in
the following sequence:

Q) SUBROUTINE or FUNCTION (ex_cevpt in a main program)
(ii} Specification statements ' ‘
(iii) DATA statements
(iv) Statement quctxon definitions

{v)} Executable statements, FORMAT stdtements and
in-line machine code sections intermixed {in any order}.

(vi) END line.

2. Restrictions on the sequence of items'w ithin an EQUIVALE‘\CL
group i.e. a set of parenthesmed 1tems inan EQUIVALENCE
statement.

a) If a group of equivalenced items includes an item which |
is also in COMMON, that item must appear first in the
equivalence group.’)

b} If the same name appears in more than one group that
name must appear at the beginning of the second and
any subsequent group in which it occurs.

Restrictions on names

(W%)

The name of a COMMON block must not be the name of a
FUNCTION statement. There are also certain restrictions
_on names beginning with the letter Q (see u‘aanter 2)

]
=}

e

[—

and

| - This problem may be overcome by -) R o)

-

4. Printing of Formatted Records

Standard Foriran specifies that the first character of a
- formatted recoerd is not printed, but used for vertical
.. format ¢ontrol. 905 FORTRAN does print this character,

5. No BLOCK DATA subprograms in 905 FORTRAN.

Compatability between different FORTRAN implementations,

The use of 'A* format almost always causes compatability
problems. 905 FORTRAN makes it possible to store up to

three characters per 18-bit word for each 'A' format specifier
(see Chapter 5. . L el e

s

(i) sforing only one character per s-to-:-age unit

(ii) aveiding arithmetic operations ox tests on the stored
characters, ’ : S

A program written in FORTRAN in one FORTRAN implementation
(on one particular machine) will not necessarily produce the same
results on another FORTRAN implementation. The factors which

may cause the program to give different results include:

a) Different word lengths and internal number representation.

b) Use of compiler facilities which are extensions to the
standard FORTRAN, such as those described for 905
FORTRAN. Lo . '

c) Conscious or unconscious dependance on effects which are

specific to given compiler system,

"An example of c} would be use of a labelled COMMON block in a

subroutine; the block not declared in the main program. In 905
FORTRAN paper tape compiler environment, the data in the ‘
COMMON block will be preserved when the subroutine i's re-entered
after a return is made to the main program. In systems which
use overlays, the data will not necessarily be preserved. Thus a
working program may (unknown to the programmer) be using data
which is explicitly undefined within ihe language, and so would
therefore have a different effect on different machines, These
points are discussed in the National Computing Centre (N.C.C,)
'Standard ¥Fortran Programming Manual' in the N.C.C. Computer
Standards Series, :

APPENDIX 3: EFFICIENCY CONSIDERATIONS

t is impractical to give détailed rules on the writing of Veffi_cient programs,
since these would involve detailed knowledge of the compiler. However, the
foltowing notes may assist the programmer in economising on either the
store used, or the time taken when running his program.

Program Size

Use of the "packed integer arrays" option will reduce the space required
for holding such arrays; the only disadvantage arising is in the lack of strict
compatibility with ASA standards, and hence with various other compilers,

Each subprogram requires some 20 - 30 words for prologue and argument
addresses, and these ""red tape' operations alsc take extra time; it is
therefore inefficient to break a program up into a large number of small
segments. On the other hand, in an 8k store there is a definite limit to
the size of program unit which can be handled by the compiler. Some
compromise is therefore needed. - - ' i

Somewhat similar considerations apply to statement functions, which
carry an overhead of about 18 ~ 25 words. A statement function which
performs a trivial operation may take up more space than it saves.

Program Speed

In any program involving floatingw“point computation, the factor geverzﬁing
the running speed is likely to be time taken by the arithmetic package to
perform the computations, together withany type conversions involved.
The extent of the computation is normally related in a fairly obvious way
to the source program - repetition of sub~expressions, for example, will
tend to give rise to repeated calculation (though the compiler will eliminate
this in some instances). Any calculation within a DO loop will be repeated
as often as the loop, so that any process not related to the value of the
control variable should be performed before the DO statoment. The
question of the type conversion is less obvious, however. It is permissible
to introduce integer constants into a real expression, but they must then
be converted at object time whenever the expression is evaluated, which

is inefficient; if an integer sub-expression involves variables, onthe

other hand, any constants should be written in integer form, and one
conversion will then be made on the value of the expression.

A program which involves only integer working will not be dominated by
any one factor in the same way, and the overheads involved in subroutine
entry, for example, may start to become significant. In this context, it
should be noteq that integer division is performed by a subroutine involving
about 40 instructions obeyed in a normal manner, and it is therefore very
much slower than any arithmetic operation, '

The difference between the implementation of assigned GOTO and

computed GOTO resulis in the former being faster; it would normally
only be noticeable inan integer program. -There is good reason for using

the computed form as a normal practice, but a relia't_)le program may gain
a litile extra speed from conversion %o use the assigned form instead.

App. 3 -1

v s e e < sy

P

